Quattro (with firmware xxxx400 or higher)

12 | 3000 | 120 – 50|50 – 230V
24 | 3000 | 70 – 50|50 – 230V
48 | 3000 | 35 – 50|50 – 230V
NOTE:
This manual is intended for products with firmware xxxx400 or higher (with x any number)
The firmware number can be found on the microprocessor, after removing the front panel.
It is possible to update older units, as long as that same 7 digit number starts with either 26 or 27. When it starts with 19 or 20
you have an old microprocessor and it is not possible to update to 400 or higher.

1. SAFETY INSTRUCTIONS

In general

Please read the documentation supplied with this product first, so that you are familiar with the safety signs and directions before using the product.
This product is designed and tested in accordance with international standards. The equipment should be used for the designated application only.

WARNING: DANGER OF ELECTRICAL SHOCK
The product is used in combination with a permanent energy source (battery). Even if the equipment is switched off, a dangerous electrical voltage can occur at the input and/or output terminals. Always switch the AC power off and disconnect the battery before performing maintenance.

The product contains no internal user-serviceable parts. Do not remove the front panel and do not put the product into operation unless all panels are fitted. All maintenance should be performed by qualified personnel.

Never use the product at sites where gas or dust explosions could occur. Refer to the specifications provided by the manufacturer of the battery to ensure that the battery is suitable for use with this product. The battery manufacturer's safety instructions should always be observed.

WARNING: do not lift heavy objects unassisted.

Installation

Read the installation instructions before commencing installation activities.

This product is a safety class I device (supplied with a ground terminal for safety purposes). Its AC input and/or output terminals must be provided with uninterruptable grounding for safety purposes. An additional grounding point is located on the outside of the product. If it can be assumed that the grounding protection is damaged, the product should be taken out of operation and prevented from accidentally being put into operation again; contact qualified maintenance personnel.

Ensure that the connection cables are provided with fuses and circuit breakers. Never replace a protective device by a component of a different type. Refer to the manual for the correct part.

Check before switching the device on whether the available voltage source conforms to the configuration settings of the product as described in the manual.

Ensure that the equipment is used under the correct operating conditions. Never operate it in a wet or dusty environment. Ensure that there is always sufficient free space around the product for ventilation, and that ventilation openings are not blocked. Install the product in a heatproof environment. Ensure therefore that there are no chemicals, plastic parts, curtains or other textiles, etc. in the immediate vicinity of the equipment.

Transport and storage

On storage or transport of the product, ensure that the mains supply and battery leads are disconnected.

No liability can be accepted for damage in transit if the equipment is not transported in its original packaging.

Store the product in a dry environment; the storage temperature should range from –20°C to 60°C.

Refer to the battery manufacturer's manual for information on transport, storage, charging, recharging and disposal of the battery.
2. DESCRIPTION

2.1 In general

The basis of the Quattro is an extremely powerful sine inverter, battery charger and automatic switch in a compact casing. The Quattro features the following additional, often unique characteristics:

Two AC inputs: integrated switch-over system between shore voltage and generating set

The Quattro features two AC inputs (AC-in-1 and AC-in-2) for connecting two independent voltage sources. For example, two generator sets, or a mains supply and a generator set. The Quattro automatically selects the input where voltage is present. If voltage is present on both inputs, the Quattro selects the AC-in-1 input, to which normally the generating set is connected.

Two AC outputs

Besides the usual uninterruptable output (AC-out-1), an auxiliary output (AC-out-2) is available that disconnects its load in the event of battery operation. Example: an electric boiler that is allowed to operate only if the genset is running or shore power is available.

Automatic and uninterruptible switching

In the event of a supply failure or when the genset is switched off, the Quattro will switch over to inverter operation and take over the supply of the connected devices. This is done so quickly that operation of computers and other electronic devices is not disturbed (Uninterruptible Power Supply or UPS functionality). This makes the Quattro highly suitable as an emergency power system in industrial and telecommunication applications. The maximum alternating current that can be switched is 30A.

Three phase capability

Three units can be configured for three-phase output. But that's not all: up to 6 sets of three units can be parallel connected to provide 45kW / 54kVA inverter power and more than 1200A charging capacity.

PowerControl – maximum use of limited shore current

The Quattro can supply a huge charging current. This implies heavy loading of the shore connection or generating set. For both AC inputs, therefore, a maximum current can be set. The Quattro then takes other power users into account, and only uses 'surplus' current for charging purposes.
- Input AC-in-1, to which usually a generating set is connected, can be set to a fixed maximum with DIP switches, with VE.Net or with a PC, so that the generating set is never overloaded.
- Input AC-in-2 can also be set to a fixed maximum. In mobile applications (ships, vehicles), however, a variable setting by means of a Multi Control Panel will usually be selected. In this way the maximum current can be adapted to the available shore current in an extremely simple manner.

PowerAssist – Extended use of your generating set and shore current: the Quattro “co-supply” feature

The Quattro operates in parallel with the generating set or the shore connection. A current shortfall is automatically compensated: the Quattro draws extra power from the battery and helps along. A current surplus is used to recharge the battery.

This unique feature offers a definitive solution for the 'shore current problem': electric tools, dish washers, washing machines, electric cooking etc. can all run on 16A shore current, or even less. In addition, a smaller generating set can be installed.

Three programmable relays

The Quattro is equipped with 3 programmable relays. The relays can be programmed for all kinds of other applications however, for example as a starter relay for a generating set.

Two programmable analog/digital input/output ports

The Quattro is equipped with 2 analog/digital input/output ports. These ports can be used for several purposes. One application is communication with the BMS of a lithium-ion battery.

Frequency shift

When solar inverters are connected to the output of a Multi or Quattro, the excess solar energy is used to recharge the batteries. Once the absorption voltage is reached, the Multi or Quattro will shut down the solar inverter by shifting the output frequency 1Hz (from 50Hz to 51Hz for example). Once battery voltage has dropped slightly, the frequency returns to normal and the solar inverters will restart.

Built-in Battery Monitor (optional)

The ideal solution when Multi's or Quattro's are part of a hybrid system (diesel generator, inverter/chargers, storage battery, and alternative energy). The built-in battery monitor can be set to start and stop the generator:
- Start at a preset % discharge level, and/or
- start (with a preset delay) at a preset battery voltage, and/or
- start (with a preset delay) at a preset load level.
- Stop at a preset battery voltage, or
- stop (with a preset delay) after the bulk charge phase has been completed, and/or
- stop (with a preset delay) at a preset load level.

Solar energy

The Quattro is extremely suitable for solar energy applications. It can be used for building autonomous systems as well as mains-coupled systems.
Emergency power or autonomous operation on mains failure
Houses or buildings provided with solar panels or a combined micro-scale heating and power plant (a power-generating central heating boiler) or other sustainable energy sources have a potential autonomous energy supply which can be used for powering essential equipment (central heating pumps, refrigerators, deep freeze units, Internet connections, etc.) during a power failure. A problem in this regard, however, is that mains-coupled solar panels and/or micro-scale heating and power plants drop out as soon as the mains supply fails. With a Quattro and batteries, this problem can be solved in a simple manner: the Quattro can replace the mains supply during a power failure. When the sustainable energy sources produce more power than necessary, the Quattro will use the surplus to charge the batteries; in the event of a shortfall, the Quattro will supply additional power from its battery energy resources.

Programmable with DIP switches, VE.Net panel or personal computer
The Quattro is supplied ready for use. Three features are available for changing certain settings if desired:
- The most important settings (including parallel operation of up to three devices and 3-phase operation) can be changed in a very simple manner, using Quattro DIP switches.
- All settings, with exception of the multi-functional relay, can be changed with a VE.Net panel.
- All settings can be changed with a PC and free of charge software, downloadable from our website www.victronenergy.com

2.2 Battery charger

Adaptive 4-stage charging characteristics: bulk – absorption – float – storage
The microprocessor-driven adaptive battery management system can be adjusted for various types of batteries. The adaptive function automatically adapts the charging process to battery use.

The right amount of charge: variable absorption time
In the event of slight battery discharge, absorption is kept short to prevent overcharging and excessive gas formation. After deep discharging, the absorption time is automatically extended in order to fully charge the battery.

Preventing damage due to excessive gassing: the BatterySafe mode
If, in order to quickly charge a battery, a high charge current in combination with a high absorption voltage has been chosen, damage due to excessive gassing will be prevented by automatically limiting the rate of voltage increase once the gassing voltage has been reached.

Less maintenance and aging when the battery is not in use: the Storage mode
The Storage mode kicks in whenever the battery has not been subjected to discharge during 24 hours. In the Storage mode float voltage is reduced to 2.2V/cell (13.2V for 12V battery) to minimise gassing and corrosion of the positive plates. Once a week the voltage is raised back to the absorption level to ‘equalize’ the battery. This feature prevents stratification of the electrolyte and sulphation, a major cause of early battery failure.

Two DC outputs for charging two batteries
The main DC terminal can supply the full output current. The second output, intended for charging a starter battery, is limited to 4A and has a slightly lower output voltage.

Increasing service life of the battery: temperature compensation
The temperature sensor (supplied with the product) serves to reduce charging voltage when battery temperature rises. This is particularly important for maintenance-free batteries, which could otherwise dry out by overcharging.

Battery voltage sense: the correct charge voltage
Voltage loss due to cable resistance can be compensated by using the voltage sense facility to measure voltage directly on the DC bus or on the battery terminals.

More on batteries and charging
Our book ‘Energy Unlimited’ offers further information on batteries and battery charging, and is available free of charge on our website (see www.victronenergy.com -> Support & Downloads -> General Technical Information). For more information on adaptive charging, please also refer to the General Technical Information our website.

2.3 Self consumption – solar energy storage systems
For more information see our white paper Self Consumption or Grid independence with the Victron Energy Storage Hub. The appropriate software can be downloaded from our website.

When the Multi/Quattro is used in a configuration in which it will feed back energy to the grid it is required to enable grid code compliance by selecting the grid code country setting with the VEConfigure tool. This way the Multi/Quattro can comply to the local rules. Once set, a password will be required to disable grid code compliance or change grid code related parameters.

If the local grid code is not supported by the Multi/Quattro an external certified interface device should be used to connect the Multi/Quattro to the grid.

The Multi/Quattro can also be used as a bidirectional inverter operating parallel to the grid, integrated into a customer designed system (PLC or other) that takes care of the control-loop and grid measurement, see http://www.victronenergy.com/live/system_integration:hub4_grid_parallel

Special note for Australian customers: IEC62109.1 certification and CEC approval for off-grid use does NOT imply approval for grid-interactive installations. Additional certification to IEC 62109.2 and AS 4777.2.2015 are required before grid-interactive systems can be implemented. Please check Clean Energy Council website for current approvals.
3. OPERATION

3.1 “On / stand by / charger only” switch

When switched to "on", the product is fully functional. The inverter will come into operation and the LED "inverter on" will light up.

An AC voltage connected to the "AC in" terminal will be switched through to the "AC out" terminal, if within specifications. The inverter will switch off, the "mains on" LED will light up and the charger commences charging. The "bulk", "absorption" or "float" LEDs will light up, depending on the charger mode.

If the voltage at the "AC-in" terminal is rejected, the inverter will switch on.

When the switch is switched to "charger only", only the battery charger of the Quattro will operate (if mains voltage is present).

In this mode input voltage also is switched through to the "AC out" terminal.

NOTE: When only the charger function is required, ensure that the switch is switched to "charger only". This prevents the inverter from being switched on if the mains voltage is lost, thus preventing your batteries from running flat.

3.2 Remote control

Remote control is possible with a 3-way switch or with a Multi Control panel. The Multi Control panel has a simple rotary knob with which the maximum current of the AC input can be set: see PowerControl and PowerAssist in Section 2.

3.3 Equalisation and forced absorption

3.3.1 Equalisation

Traction batteries require regular additional charging. In the equalisation mode, the Quattro will charge with increased voltage for one hour (1V above the absorption voltage for a 12V battery, 2V for a 24V battery). The charging current is then limited to 1/4 of the set value. The “bulk” and “absorption” LED’s flash intermittently.

Equalisation mode supplies a higher charging voltage than most DC consuming devices can cope with. These devices must be disconnected before additional charging takes place.

3.3.2 Forced absorption

Under certain circumstances, it can be desirable to charge the battery for a fixed time at absorption voltage level. In Forced Absorption mode, the Quattro will charge at the normal absorption voltage level during the set maximum absorption time. The “absorption” LED lights.

3.3.3 Activating equalisation or forced absorption

The Quattro can be put into both these states from the remote panel as well as with the front panel switch, provided that all switches (front, remote and panel) are set to “on” and no switches are set to “charger only”.

In order to put the Quattro in this state, the procedure below should be followed.

If the switch is not in the required position after following this procedure, it can be switched over quickly once. This will not change the charging state.

NOTE: Switching from “on” to “charger only” and back, as described below, must be done quickly. The switch must be toggled such that the intermediate position is ‘skipped’, as it were. If the switch remains in the ‘off’ position even for a short time, the device may be turned off. In that case, the procedure must be restarted at step 1. A certain degree of familiarisation is required when using the front switch on the Compact in particular. When using the remote panel, this is less critical.

Procedure:

Check whether all switches (i.e. front switch, remote switch or remote panel switch if present) are in the "on" position. Activating equalisation or forced absorption is only meaningful if the normal charging cycle is completed (charger is in 'Float').

To activate:

a. Switch rapidly from “on” to “charger only” and leave the switch in this position for ½ to 2 seconds.
b. Switch rapidly back from “charger only” to “on” and leave the switch in this position for ½ to 2 seconds.
c. Switch once more rapidly from “on” to “charger only” and leave the switch in this position.

On the Quattro (and, if connected, on the MultiControl panel) the three LED’s “Bulk”, “Absorption” and “Float” will now flash 5 times.

a. If the switch is set to “on” while the “Bulk” LED lights, the charger will switch to equalisation.
b. If the switch is set to “on” while the “Absorption” LED lights, the charger will switch to forced absorption.
c. If the switch is set to “on” after the three LED sequence has finished, the charger will switch to “Float”.
d. If the switch is has not been moved, the Quattros will remain in ‘charger only’ mode and switch to “Float”.

4
3.4 LED indications and their meaning

- **LED off**
- **LED flashes**
- **LED lights**

Inverter

<table>
<thead>
<tr>
<th>Charger</th>
<th>Inverter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
<td>The inverter is on, and supplies power to the load.</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
<td>The nominal power of the inverter is exceeded. The "overload" LED flashes.</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
<td>The inverter is switched off due to overload or short circuit.</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
<td>The battery is almost empty.</td>
</tr>
<tr>
<td>charger only</td>
<td>inverter on</td>
<td>The inverter is switched off due to low battery voltage.</td>
</tr>
<tr>
<td>charger only</td>
<td>temperature</td>
<td>The internal temperature is reaching a critical level.</td>
</tr>
</tbody>
</table>

NB:
- Selections in the tables are for demonstration purposes only.
-九龙能源
- Victron Energy
The inverter is switched off due to excessively high internal temperature.

– If the LEDs flash alternately, the battery almost empty and nominal power is exceeded.
– If “overload” and “low battery” flash simultaneously, there is an excessively high ripple voltage at the battery connection.

The inverter is switched off due to an excessively high ripple voltage on the battery connection.
Battery charger

The AC voltage on AC-in-1 or AC-in-2 is switched through, and the charger operates in bulk phase.

- mains on
- bulk off
- absorption
- float
- inverter
- overload
- low battery
- charger only
- temperature

The AC voltage on AC-in-1 or AC-in-2 is switched through and the charger operates, but the set absorption voltage has not yet been reached (battery protection mode)

- mains on
- bulk off
- absorption
- float
- inverter
- overload
- low battery
- charger only
- temperature

The AC voltage on AC-in-1 or AC-in-2 is switched through, and the charger operates in absorption phase.

- mains on
- bulk off
- absorption
- float
- inverter
- overload
- low battery
- charger only
- temperature

The AC voltage on AC-in-1 or AC-in-2 is switched through, and the charger operates in float or storage phase.

- mains on
- bulk off
- absorption
- float
- inverter
- overload
- low battery
- charger only
- temperature

The AC voltage on AC-in-1 or AC-in-2 is switched through, and the charger operates in equalisation mode.

- mains on
- bulk off
- absorption
- float
- inverter
- overload
- low battery
- charger only
- temperature
Special indications

Set with limited input current

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption off</td>
<td>low battery</td>
</tr>
<tr>
<td>float charger</td>
<td>temperature</td>
</tr>
</tbody>
</table>

The AC voltage on AC1-in-1 or AC-in-2 is switched through. The AC-input current is equal to the load current. The charger is down-controlled to 0A.

Set to supply additional current

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption off</td>
<td>low battery</td>
</tr>
<tr>
<td>float charger</td>
<td>temperature</td>
</tr>
</tbody>
</table>

The AC voltage on AC-in-1 or AC-in-2 is switched through, but the load demands more current than the mains can supply. The inverter is now switched on to supply additional current.
4. INSTALLATION

This product may only be installed by a qualified electrical engineer.

4.1 Location

The Quattro should be installed in a dry, well-ventilated location, as close as possible to the batteries. The device should be surrounded by a free space of at least 10 cm for cooling purposes.

An excessively high environmental temperature has the following consequences:
- shorter lifespan
- lower charging current
- lower peak power or inverter shut-down.

Never place the device directly above the batteries.

The Quattro is suitable for wall mounting. For mounting purposes, a hook and two holes are provided at the back of the casing (see appendix G). The device can be fitted either horizontally or vertically. For optimal cooling, vertical fitting is preferred.

The inner part of the device should remain accessible after installation.

The distance between the Quattro and the battery should be as short as possible to reduce voltage loss across the battery cables to a minimum.

Install the product in a heatproof environment.
Ensure therefore that there are no chemicals, plastic parts, curtains or other textiles, etc. in the direct vicinity.

The Quattro has no internal DC fuse. The DC fuse should be installed outside the Quattro.

4.2 Connecting the battery cables

In order to use the full potential of the Quattro, batteries of sufficient capacity and battery cables with the correct cross-section should be used.

See table:

<table>
<thead>
<tr>
<th>Recommended battery capacity (Ah)</th>
<th>12/3000/120</th>
<th>24/3000/70</th>
<th>48/3000/35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended DC fuse</td>
<td>400A</td>
<td>300A</td>
<td>125A</td>
</tr>
<tr>
<td>Recommended cross-section (mm²) per + and - connection terminal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 5 m*</td>
<td>2x 50 mm²</td>
<td>50 mm²</td>
<td>35 mm²</td>
</tr>
<tr>
<td>5 -10 m*</td>
<td>2x 70 mm²</td>
<td>2x 50 mm²</td>
<td>2x 35 mm²</td>
</tr>
</tbody>
</table>

* ‘2x’ means two positive and two negative cables.

Procedure

To connect the battery cables, follow the procedure below:

Use a torque wrench with insulated box spanner in order to avoid shorting the battery.

Maximum torque: 9 Nm

Avoid shorting the battery cables To prevent short circuiting of the battery, an isolated box wrench should be used.

- Loosen the four lower front panel screws at the front of the unit, and remove the lower front panel.
- Connect the battery cables: + (red) to the right-hand terminal and - (black) to the left-hand terminal (see appendix A).
- Tighten the connections after mounting the fastening parts.
4.3 Connecting AC cables

The Quattro is a safety class I product (supplied with an ground terminal for safety purposes). Its AC input and/or output terminals and/or grounding point on the outside of the product must be provided with an uninterruptable grounding point for safety purposes. See the following instructions in this regard.

The Quattro is provided with a ground relay (see appendix) that automatically connects the N output to the casing if no external AC supply is available. If an external AC supply is provided, the ground relay will open before the input safety relay closes (relay H in appendix B). This ensures the correct operation of an earth leakage circuit breaker that is connected to the output.

In a fixed installation, an uninterruptable grounding can be secured by means of the grounding wire of the AC input. Otherwise the casing must be grounded.

In a mobile installation (for example, with a shore current plug), interrupting the shore connection will simultaneously disconnect the grounding connection. In that case, the casing must be connected to the chassis (of the vehicle) or to the hull or grounding plate (of the boat).

In general, the connection described above to shore connection grounding is not recommended for boats because of galvanic corrosion. The solution to this is using an isolating transformer.

The inverter does incorporate a mains frequency isolating transformer. This precludes the possibility of DC current at any AC port. Therefore type A RCD’s can be used.

AC-in-1 (see appendix A)
If AC voltage is present on these terminals, the Quattro will use this connection. Generally a generator will be connected to AC-in-1.

The AC-in-1 input must be protected by a fuse or magnetic circuit breaker rated at 50A or less, and cable cross-section must be sized accordingly. If the input AC supply is rated at a lower value, the fuse or magnetic circuit breaker should be down sized accordingly.

AC-in-2 (see appendix A)
If AC voltage is present on these terminals, the Quattro will use this connection, unless voltage is also present on AC-in-1. The Quattro will then automatically select AC-in-1. Generally the mains supply or shore voltage will be connected to AC-in-2.

The AC-in-2 input must be protected by a fuse or magnetic circuit breaker rated at 50A or less, and cable cross-section must be sized accordingly. If the input AC supply is rated at a lower value, the fuse or magnetic circuit breaker should be down sized accordingly.

Note: The Quattro may not start when AC is present only on AC-in-2, and DC battery voltage is 10% or more below nominal (less than 11 Volt in case of a 12 Volt battery).

Solution: connect AC power to AC-in-1, or recharge the battery.

AC-out-1 (see appendix A)
The AC output cable can be connected directly to the terminal block "AC-out".

With its PowerAssist feature the Quattro can add up to 3kVA (that is 3000 / 230 = 13A) to the output during periods of peak power requirement. Together with a maximum input current of 50A this means that the output can supply up to 50 + 13 = 63A.

An earth leakage circuit breaker and a fuse or circuit breaker rated to support the expected load must be included in series with the output, and cable cross-section must be sized accordingly. The maximum rating of the fuse or circuit breaker is 63A.

AC-out-2 (see appendix A)
A second output is available that disconnects its load in the event of battery operation. On these terminals, equipment is connected that may only operate if AC voltage is available on AC-in-1 or AC-in-2, e.g. an electric boiler or an air conditioner. The load on AC-out-2 is disconnected immediately when the Quattro switches to battery operation. After AC power becomes available on AC-in-1 or AC-in-2, the load on AC-out-2 will be reconnected with a delay of approximately 2 minutes. This to allow a genset to stabilise.

AC-out-2 can support loads of up to 25A. An earth leakage circuit breaker and fuse rated at max. 25A must be connected in series with AC-out-2.

Procedure
Use three-core cable. The connection terminals are clearly encoded:
PE: earth
N: neutral conductor
L: phase/live conductor
4.4 Connection options

4.4.1 Starter battery (connection terminal E, see appendix A)
The Quattro has a connection for charging a starter battery. Output current is limited to 4A.

4.4.2 Voltage sense (connection terminal E, see appendix A)
For compensating possible cable losses during charging, two sense wires can be connected with which the voltage directly on the battery or on the positive and negative distribution points can be measured. Use wire with a cross-section of 0,75mm².
During battery charging, the Quattro will compensate the voltage drop over the DC cables up to a maximum of 1 Volt (i.e. 1V over the positive connection and 1V over the negative connection). If the voltage drop threatens to become larger than 1V, the charging current is limited in such a way that the voltage drop remains limited to 1V.

4.4.3 Temperature sensor (connection terminal E, see appendix A)
For temperature-compensated charging, the temperature sensor (supplied with the Quattro) can be connected. The sensor is isolated and must be fitted to the negative terminal of the battery.

4.4.4 Remote control
The Quattro can be remotely controlled in two ways:
- With an external switch (connection terminal H, see appendix A). Operates only if the switch on the Quattro is set to "on".
- With a Multi control panel (connected to one of the two RJ48 sockets B, see appendix A). Operates only if the switch on the Quattro is set to "on".
Using the Multi control panel, only the current limit for AC-in-2 can be set (in regard to PowerControl and PowerAssist).
The current limit for AC-in-1 can be set with DIP switches or by means of software.

Only one remote control can be connected, i.e. either a switch or a Multi control panel.

4.4.5 Programmable relay
The Quattro is equipped with a multi-functional relay that by default is programmed as an alarm relay. The relay can be programmed for all kinds of other applications however, for example to start a generator (VEConfigure software needed).

4.4.6 Auxiliary AC output (AC-out-2)
Besides the usual uninterruptable output (AC-out-1), a second output (AC-out-2) is available that disconnects its load in the event of battery operation. Example: an electric boiler or air conditioner that is allowed to operate only if the genset is running or shore power is available.
In case of battery operation, AC-out-2 is switched off immediately. After the AC supply has become available, AC-out-2 is reconnected with a delay of 2 minutes, this allow a genset to stabilize prior to connecting a heavy load.

4.4.7 Connecting Quattros in parallel (see appendix C)
The Quattro can be connected in parallel with several identical devices. To this end, a connection is established between the devices by means of standard RJ45 UTP cables. The system (one or more Quattros plus optional control panel) will require subsequent configuration (see Section 5).
In the event of connecting Quattro units in parallel, the following requirements must be met:
- A maximum of six units connected in parallel.
- Only identical devices with the same power ratings may be connected in parallel.
- Battery capacity should be sufficient.
- The DC connection cables to the devices must be of equal length and cross-section.
- If a positive and a negative DC distribution point is used, the cross-section of the connection between the batteries and the DC distribution point must at least equal the sum of the required cross-sections of the connections between the distribution points and the Quattro units.
- Place the Quattro units close to each other, but allow at least 10 cm for ventilation purposes under, above and beside the units.
- UTP cables must be connected directly from one unit to the other (and to the remote panel). Connection/splitter boxes are not permitted.
- A battery-temperature sensor need only be connected to one unit in the system. If the temperature of several batteries is to be measured, you can also connect the sensors of other Quattro units in the system (with a maximum of one sensor per Quattro). Temperature compensation during battery charging responds to the sensor indicating the highest temperature.
- Voltage sensing must be connected to the master (see Section 5.5.1.4).
- Only one remote control means (panel or switch) can be connected to the system.

4.4.8 Three-phase configuration (see appendix C)
Quattros can also be used in 3-phase configuration wye (Y). To this end, a connection between the devices is made by means of standard RJ45 UTP cables (the same as for parallel operation). The system (Quattros plus an optional control panel) will require subsequent configuration (see Section 5).
Pre-requisites: see Section 4.4.7.
Note: the Quattro is not suitable for 3-phase delta (Δ) configuration.
5. CONFIGURATION

- Settings may only be changed by a qualified electrical engineer.
- Read the instructions thoroughly before implementing changes.
- During setting of the charger, the DC fuse in the battery connections must be removed.

5.1 Standard settings: ready for use

On delivery, the Quattro is set to standard factory values. In general, these settings are selected for single-unit operation. Settings, therefore, do not require changing in the event of stand-alone use.

Warning: Possibly, the standard battery charging voltage is not suitable for your batteries! Refer to the manufacturer’s documentation, or to your battery supplier!

<table>
<thead>
<tr>
<th>Standard Quattro factory settings</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Input frequency range</td>
<td>45 - 65 Hz</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>180 - 265 VAC</td>
</tr>
<tr>
<td>Inverter voltage</td>
<td>230 VAC</td>
</tr>
<tr>
<td>Stand-alone / parallel / 3-phase</td>
<td>stand-alone</td>
</tr>
<tr>
<td>AES (Automatic Economy Switch)</td>
<td>off</td>
</tr>
<tr>
<td>Ground relay</td>
<td>on</td>
</tr>
<tr>
<td>Charger on/off</td>
<td>on</td>
</tr>
<tr>
<td>Charging characteristics</td>
<td>four-stage adaptive with BatterySafe mode</td>
</tr>
<tr>
<td>Charging current</td>
<td>75% of the maximum charging current</td>
</tr>
<tr>
<td>Battery type</td>
<td>Victron Gel Deep Discharge (also suitable for Victron AGM Deep)</td>
</tr>
<tr>
<td>Discharge</td>
<td></td>
</tr>
<tr>
<td>Automatic equalisation charging</td>
<td>off</td>
</tr>
<tr>
<td>Absorption voltage</td>
<td>14.4 / 28.8 / 57.6 V</td>
</tr>
<tr>
<td>Absorption time</td>
<td>up to 8 hours (depending on bulk time)</td>
</tr>
<tr>
<td>Float voltage</td>
<td>13.8 / 27.6 / 55.2 V</td>
</tr>
<tr>
<td>Storage voltage</td>
<td>13.2V (not adjustable)</td>
</tr>
<tr>
<td>Repeated absorption time</td>
<td>1 hour</td>
</tr>
<tr>
<td>Absorption repeat interval</td>
<td>7 days</td>
</tr>
<tr>
<td>Bulk protection</td>
<td>on</td>
</tr>
<tr>
<td>Generator (AC-in-1) / shore current (AC-in-2)</td>
<td>50A/16A (= adjustable current limit for PowerControl and PowerAssist functions)</td>
</tr>
<tr>
<td>UPS feature</td>
<td>on</td>
</tr>
<tr>
<td>Dynamic current limiter</td>
<td>off</td>
</tr>
<tr>
<td>WeakAC</td>
<td>off</td>
</tr>
<tr>
<td>BoostFactor</td>
<td>2</td>
</tr>
<tr>
<td>Programmable relay</td>
<td>alarm function</td>
</tr>
<tr>
<td>PowerAssist</td>
<td>on</td>
</tr>
</tbody>
</table>

5.2 Explanation of settings

Settings that are not self-explanatory are described briefly below. For further information, please refer to the help files in the software configuration programs (see Section 5.3).

Inverter frequency
Output frequency if no AC is present at the input.
Adjustability: 50Hz; 60Hz

Input frequency range
Input frequency range accepted by the Quattro. The Quattro synchronises within this range with the voltage present on AC-in-1 (priority input) or AC-in-2. Once synchronised, the output frequency will be equal to the input frequency.
Adjustability: 45 – 65 Hz; 45 – 55 Hz; 55 – 65 Hz

Input voltage range
Voltage range accepted by the Quattro. The Quattro synchronises within this range with the voltage present on AC-in-1 (priority input) or on AC-in-2. After the back feed relay has closed, output voltage will be equal to input voltage.
Adjustability:
Lower limit: 180 - 230V
Upper limit: 230 - 270V

Note: the standard lower limit setting of 180V is intended for connection to a weak mains supply, or to a generator with unstable AC output. This setting may result in a system shut down when connected to a ‘brushless, self excited, externally voltage regulated, synchronous AC generator’ (synchronous AVR generator). Most generators rated at 10kVA or more are synchronous AVR generators. The shut down is initiated when the generator is stopped and revs down while the AVR simultaneously ‘tries’ to keep the output voltage of the generator at 230V. The solution is to increase the lower limit setting to 210VAC (the output of AVR generators is generally very stable), or to disconnect the Multi(s) from the generator when a generator stop signal is given (with help of an AC contactor installed in series with the generator).
Inverter voltage
Output voltage of the Quattro in battery operation.
Adjustability: 210 – 245V

Stand-alone / parallel operation / 2-3 phase setting
Using several devices, it is possible to:
- increase total inverter power (several devices in parallel)
- create a split-phase system (only for Quattro units with 120V output voltage)
- create a 3-phase system.

To this end, the devices must be mutually connected with RJ45 UTP cables. Standard device settings, however, are such that each device operates in stand-alone operation. Reconfiguration of the devices is therefore required.

AES (Automatic Economy Switch)
If this setting is turned 'on', the power consumption in no-load operation and with low loads is decreased by approx. 20%, by slightly 'narrowing' the sinusoidal voltage. Not adjustable with DIP switches. Applicable in stand-alone configuration only.

Search Mode
Instead of the AES mode, the search mode can also be chosen (with help of VEConfigure only).
If search mode is 'on', the power consumption in no-load operation is decreased by approx. 70%. In this mode the Quattro, when operating in inverter mode, is switched off in case of no load or very low load, and switches on every two seconds for a short period. If the output current exceeds a set level, the inverter will continue to operate. If not, the inverter will shut down again.
The Search Mode “shut down” and “remain on” load levels can be set with VEConfigure.
The standard settings are:
Shut down: 40 Watt (linear load)
Turn on: 100 Watt (linear load)
Not adjustable with DIP switches. Applicable in stand-alone configuration only.

Ground relay (see appendix B)
With this relay (H), the neutral conductor of the AC output is grounded to the casing when the back feed safety relays in the AC-in-1 and the AC-in-2 inputs are open. This ensures the correct operation of earth leakage circuit breakers in the outputs.
If a non-grounded output is required during inverter operation, this function must be turned off. (See also Section 4.5)
Not adjustable with DIP switches.
If required an external ground relay can be connected (for a split-phase system with a separate autotransformer).
See appendix A.

Battery charge curve
The standard setting is ‘Four-stage adaptive with BatterySafe mode’. See Section 2 for a description.
This is the best charging characteristic. See the help files in the software configuration programs for other features.
‘Fixed’ mode can be selected with DIP switches.

Battery type
The standard setting is the most suitable for Victron Gel Deep Discharge, Gel Exide A200, and tubular plate stationary batteries (OPzS). This setting can also be used for many other batteries: e.g. Victron AGM Deep Discharge and other AGM batteries, and many types of flat-plate open batteries. Four charging voltages can be set with DIP switches.
With VEConfigure the charge curve can be adjusted to charge any battery type (Nickel Cadmium batteries, Lithium-ion batteries)

Automatic equalisation charging
This setting is intended for tubular plate traction batteries. During absorption the voltage limit increases to 2,83V/cell (34V for a 24V battery) once the charge current has tapered down to less than 10% of the set maximum current.
Not adjustable with DIP switches.
See ‘tubular plate traction battery charge curve’ in VEConfigure.

Absorption time
This depends on the bulk time (adaptive charging characteristic), so that the battery is optimally charged. If the ‘fixed’ charging characteristic is selected, the absorption time is fixed. For most batteries, a maximum absorption time of eight hours is suitable.
If an extra high absorption voltage is selected for rapid charging (only possible for open, flooded batteries!), four hours is preferable. With DIP switches, a time of eight or four hours can be set. For the adaptive charging characteristic, this determines the maximum absorption time.

Storage voltage, Repeated Absorption Time, Absorption Repeat Interval
See Section 2. Not adjustable with DIP switches.

Bulk Protection
When this setting is ‘on’, the bulk charging time is limited to 10 hours. A longer charging time could indicate a system error (e.g. a battery cell short-circuit). Not adjustable with DIP switches.
AC input current limit AC-in-1 (generator) / AC-in-2 (shore/grid supply)
These are the current limit settings at which PowerControl and PowerAssist come into operation.

PowerAssist setting range:
- From 5.3A to 50A for input AC-in-1
- From 5.3A to 50A for input AC-in-2

Factory setting: the maximum value (50A and 16A).

In case of parallel units the range the minimum and maximum values have to be multiplied by the number of parallel units.

See Section 2, the book ‘Energy Unlimited’, or the many descriptions of this unique feature on our website www.victronenergy.com.

UPS feature
If this setting is ‘on’ and AC on the input fails, the Quattro switches to inverter operation practically without interruption. The Quattro can then be used as an Uninterruptible Power Supply (UPS) for sensitive equipment such as computers or communication systems.

The output voltage of some small generating sets is too unstable and distorted for using this setting – the Quattro would continually switch to inverter operation. For this reason, the setting can be turned off. The Quattro will then respond less quickly to voltage deviations on AC-in-1 or AC-in-2. The switchover time to inverter operation is consequently slightly longer, but most equipment (computers, clocks or household equipment) is not adversely impacted.

Recommendation: Turn the UPS feature off if the Quattro fails to synchronise, or continually switches back to inverter operation.

Dynamic current limiter
Intended for generators, the AC voltage being generated by means of a static inverter (so-called ‘inverter’ generators). In these generators, rotational speed is down-controlled if the load is low: this reduces noise, fuel consumption and pollution. A disadvantage is that the output voltage will drop severely or even completely fail in the event of a sudden load increase. More load can only be supplied after the engine is up to speed.

If this setting is ‘on’, the Quattro will start supplying extra power at a low generator output level and gradually allow the generator to supply more, until the set current limit is reached. This allows the generator engine to get up to speed.

This setting is also often used for ‘classical’ generators that respond slowly to sudden load variation.

WeakAC
Strong distortion of the input voltage can result in the charger hardly operating or not operating at all. If WeakAC is set, the charger will also accept a strongly distorted voltage, at the cost of greater distortion of the input current.

Recommendation: Turn WeakAC on if the charger is hardly charging or not charging at all (which is quite rare!). Also turn on the dynamic current limiter simultaneously, and reduce the maximum charging current to prevent overloading the generator if necessary.

Note: when WeakAC is on, the maximum charge current is reduced by approximately 20%.

Not adjustable with DIP switches.

BoostFactor
Change this setting only after consulting with Victron Energy or with an engineer trained by Victron Energy!

Not adjustable with DIP switches.

Three programmable relays
The Quattro is equipped with 3 programmable relays. The relays can be programmed for all kinds of other applications, for example as a starter relay for a generating set. The default setting of the relay in position I (see appendix A, upper right corner) is ‘alarm’.

Not adjustable with DIP switches.

Frequency shift
When solar inverters are connected to the output of a Multi or Quattro, the excess solar energy is used to recharge the batteries. Once the absorption voltage is reached, the Multi or Quattro will shut down the solar inverter by shifting the output frequency 1Hz (from 50Hz to 51Hz for example). Once battery voltage has dropped slightly, the frequency returns to normal and the solar inverters will restart.

Not adjustable with DIP switches.

Built-in Battery Monitor (optional)
The ideal solution when Multi’s or Quattro’s are part of a hybrid system (diesel generator, inverter/chargers, storage battery, and alternative energy). The built-in battery monitor can be set to start and stop the generator:
- Start at a preset % discharge level, and/or
- start (with a preset delay) at a preset battery voltage, and/or
- start (with a preset delay) at a preset load level.
- Stop at a preset battery voltage, or
- stop (with a preset delay) after the bulk charge phase has been completed, and/or
- stop (with a preset delay) at a preset load level.

Not adjustable with DIP switches.

Auxiliary AC output (AC-out-2)
Besides the uninterruptable output (AC-out-1), a second output (AC-out-2) is available that disconnects its load in the event of battery operation. Example: an electric boiler or air conditioner that is allowed to operate only if the genset is running or shore power is available.

In case of battery operation, AC-out-2 is switched off immediately. After the AC supply has become available, AC-out-2 is reconnected with a delay of 2 minutes, to allow a genset to stabilise prior to connecting a heavy load.
5.3 Configuration by computer

All settings can be changed by means of a computer or with a VE.Net panel (except for the multi-functional relay and the VirtualSwitch when using VE.Net).
The most common settings can be changed by means of DIP switches (see Section 5.5).

NOTE:
This manual is intended for products with firmware xxxx400 or higher (with x any number)
The firmware number can be found on the microprocessor, after removing the front panel.
It is possible to update older units, as long as that same 7 digit number starts with either 26 or 27. When it starts with 19 or 20
you have an old microprocessor and it is not possible to update to 400 or higher.

For changing settings with the computer, the following is required:
- VEConfigure3 software: can be downloaded free of charge at www.victronenergy.com.
- A MK3-USB (VE.Bus to USB) interface, and a RJ45 UTP cable.
 Alternatively, the Interface MK2.2b (VE.Bus to RS232) and a RJ45 UTP cable can be used.

5.3.1 VE.Bus Quick Configure Setup
VE.Bus Quick Configure Setup is a software program with which systems with a maximum of three Quattro units (parallel or
three phase operation) can be configured in a simple manner. VEConfigure3 forms part of this program.
The software can be downloaded free of charge at www.victronenergy.com.

5.3.2 VE.Bus System Configurator
For configuring advanced applications and/or systems with four or more Quattro units, VE.Bus System Configurator software
must be used. The software can be downloaded free of charge at www.victronenergy.com . VEConfigure3 forms part of this
program.

5.4 Configuration with a VE.Net panel

To this end, a VE.Net panel and the VE.Net to VE.Bus converter is required.
With VE.Net all parameters are accessible, with the exception of the multi-functional relay and the VirtualSwitch.
5.5 Configuration with DIP switches

Introduction
A number of settings can be changed using DIP switches (see appendix A, position M).

Note: When changing settings with dipswitches in a parallel or split-phase/3-phase system one should be aware that not all settings are relevant on all Quattros. This because some settings will be dictated by the Master or Leader. Some settings are only relevant in the Master/Leader (ie they are not relevant in a slave or in a follower). Other settings are not relevant for slaves but are relevant for followers.

A note on used terminology:
A system in which more than one Quattro is used to create a single AC phase is called a parallel system. In this case one of the Quattros will control the whole phase, this one is called the master. The others, called slaves, will just listen to the master to determine their action.
It is also possible to create more AC phases (split-phase or 3-phase) with 2 or 3 Quattros. In this case the Quattro in Phase L1 is called the Leader. The Quattro in phase L2 (and L3 if available) will generate the same AC frequency but will follow L1 with a fixed phase shift. These Quattros are called followers.

If more Quattros are used per phase in a split-phase or 3-phase system (for instance 6 Quattros used to build a 3-phase system with 2 Quattros per phase) then the Leader of the system is also the Master of phase L1. The Followers in phase L2 and L3 will also take the Master role in phase L2 and L3. All others will be slaves.

Setting up parallel or split-phase/3-phase systems should be done by software, see paragraph 5.3.
TIP: If you don’t want to bother about a Quattro being a master/slave/follower then the easiest and most straightforward way is to set all settings identically on all Quattros.

General procedure:
Turn the Quattro on, preferably unloaded and without AC voltage on the inputs. The Quattro will then operate in inverter mode.

Step 1: Set the DIP switches for:
- the required current limitation of the AC input. (not relevant for slaves)
- limitation of the charging current. (only relevant for Master/Leader)

Press the 'Up' button for 2 seconds (upper button to the right of the DIP switches, see appendix A, position K) to store the settings after the required values have been set. You can now re-use the DIP switches to apply the remaining settings (step 2).

Step 2: other settings, set the dipswitches for:
- Charge voltages (only relevant for Master/Leader)
- Absorption time (only relevant for Master/Leader)
- Adaptive charging (only relevant for Master/Leader)
- Dynamic current limiter (not relevant for slaves)
- converter voltage (not relevant for slaves)
- converter frequency (only relevant for Master/Leader)

Press the 'Down' button for 2 seconds (lower button to the right of the DIP switches) to store the settings after the dipswitches have been set in the correct position. You can now leave the DIP switches in the selected positions, so that the ‘other settings’ can always be recovered.

Remark:
- The DIP switch functions are described in 'top to bottom' order. Since the uppermost DIP switch has the highest number (8), descriptions start with the switch numbered 8.

5.5.1 Step 1
5.5.1.1 Current limitation AC inputs (default: AC-in-1: 50A, AC-in-2: 16A)

When the AC input current drawn by the Quattro (due to the connected loads and the battery charger) rises and is about to exceed the AC input current limit, the Quattro will first reduce its charging current (PowerControl) and subsequently, if needed, supply additional power from the battery (PowerAssist). This way the Quattro will try to prevent that the input current exceeds the set limit.

The AC-in-1 current limit (the generator) can be set to eight different values by means of DIP switches. The AC-in-2 current limit can be set to two different values by means of DIP switches. With a Multi Control Panel, a variable current limit can be set for the AC-in-2 input.
Procedure
AC-in-1 can be set using DIP switches ds8, ds7 and ds6 (default setting: 50A).
Procedure: set the DIP switches to the required value:

- ds8 off off off = 6A (1.4kVA at 230V)
- ds8 off off on = 10A (2.3kVA at 230V)
- ds8 off on off = 12A (2.8kVA at 230V)
- ds8 off on on = 16A (3.7kVA at 230V)
- ds8 on off off = 20A (4.6kVA at 230V)
- ds8 on off on = 25A (5.7kVA at 230V)
- ds8 on on off = 30A (6.9kVA at 230V)
- ds8 on on on = 50A (11.5kVA at 230V)

Remark: Manufacturer-specified continuous power ratings for small generators are sometimes inclined to be rather optimistic. In that case, the current limit should be set to a much lower value than would otherwise be required on the basis of manufacturer-specified data.

AC-in-2 can be set in two steps using DIP switch ds5 (default setting: 16A).
Procedure: set ds5 to the required value:

- ds5 off = 16A
- ds5 on = 30A

More than 30A: with VEConfigure software or a Digital Multi Control Panel

Important: When a panel is connected, the AC-in-2 current limit is determined by the panel and not by the value stored in the Quattro.

5.5.1.2 Charge current limitation (default setting 75%)
For maximum lead acid battery life, a charge current of 10% to 20% of the capacity in Ah should be applied.
Example: optimal charge current of a 24V/500Ah battery bank: 50A to 100A.
The temperature sensor supplied automatically adjusts the charging voltage to the battery temperature.
If faster charging – and a subsequent higher current – is required:
- the temperature sensor supplied should be fitted to the battery, since fast charging can lead to a considerable temperature rise of the battery bank. The charging voltage is adapted to the higher temperature (i.e. lowered) by means of the temperature sensor.
- the bulk charging time will sometimes be so short that a fixed absorption time would be more satisfactory (‘fixed’ absorption time, see ds5, step 2).

Procedure
The battery charging current can be set in four steps, using DIP switches ds4 and ds3 (default setting: 75%).

- ds4 off off = 25%
- ds4 off on = 50%
- ds4 on off = 75%
- ds4 on on = 100%

Note: when WeakAC is on, the maximum charge current is reduced from 100% to approximately 80%.

5.5.1.3 DIP switches ds2 and ds1 are not used during step 1.

IMPORTANT NOTE:
If the last 3 digits of the Multi firmware is in the 100 range (so the firmware number is xxxx1xx (with x any numer)) then ds1 & ds2 are used to set a Multi in stand-alone, parallel or three-phase. Please consult the appropriate manual.
5.5.1.4 Examples

eamples of settings:

<table>
<thead>
<tr>
<th>DS8-8 AC-in-1</th>
<th>DS8-7 AC-in-1</th>
<th>DS8-6 AC-in-1</th>
<th>DS8-5 AC-in-2</th>
<th>DS8-4 AC-in-2</th>
<th>DS8-3 AC-in-2</th>
<th>DS8-2 AC-in-2</th>
<th>DS8-1 Stand-alone mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>DS-8</td>
<td>DS-7</td>
<td>DS-6</td>
<td>DS-5</td>
<td>DS-4</td>
<td>DS-3</td>
<td>DS-2</td>
<td>DS-1</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
</tbody>
</table>

To store the settings after the required values have been set: press the 'Up' button for 2 seconds (upper button to the right of the DIP switches, see appendix A, position K). The overload and low-battery LED's will flash to indicate acceptance of the settings.

We recommend making a note of the settings, and filing this information in a safe place. The DIP switches can now be used to apply the remaining settings (step 2).

5.5.2 Step 2: Other settings

The remaining settings are not relevant for slaves.

Some of the remaining settings are not relevant for followers (L2, L3). These settings are imposed on the whole system by the leader L1. If a setting is irrelevant for L2, L3 devices, this is mentioned explicitly.

ds8-ds7: Setting charging voltages (not relevant for L2, L3)

<table>
<thead>
<tr>
<th>ds8-ds7</th>
<th>Absorption voltage</th>
<th>Float voltage</th>
<th>Storage voltage</th>
<th>Suitable for</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>14.1</td>
<td>28.2</td>
<td>56.4</td>
<td>Gel Victron Long Life (OPzV)</td>
</tr>
<tr>
<td>on</td>
<td>14.4</td>
<td>28.6</td>
<td>57.6</td>
<td>Gel Exide A600 (OPzV)</td>
</tr>
<tr>
<td></td>
<td>14.7</td>
<td>58.8</td>
<td>61.0</td>
<td>Gel MK battery</td>
</tr>
</tbody>
</table>

Note:
- If “adaptive charging algorithm” is on, ds6 sets the maximum absorption time to 8 hours or 4 hours.
- If “adaptive charging algorithm” is off, the absorption time is set to 8 hours or 4 hours (fixed) by ds6.
Step 2: Exemplary settings
Example 1 is the factory setting (since factory settings are entered by computer, all DIP switches of a new product are set to 'off' and do not reflect the actual settings in the microprocessor).

<table>
<thead>
<tr>
<th>DS-8 Ch. voltage</th>
<th>DS-7 Ch. voltage</th>
<th>DS-6 Absorpt. time</th>
<th>DS-5 Adaptive ch.</th>
<th>DS-4 Dyn. Curr. limit</th>
<th>DS-3 UPS function</th>
<th>DS-2 Voltage</th>
<th>DS-1 Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

Step 2 Example 1 (factory setting):
- 8, 7 GEL 14.4V
- 6 Absorption time: 8 hours
- 5 Adaptive charging: on
- 4 Dynamic current limit: off
- 3 UPS function: on
- 2 Voltage: 230V
- 1 Frequency: 50Hz

Step 2 Example 2:
- 8, 7 OPzV 14.1V
- 6 Absorption time: 8 h
- 5 Adaptive charging: on
- 4 Dyn. current limit: off
- 3 UPS function: off
- 2 Voltage: 230V
- 1 Frequency: 50Hz

Step 2 Example 3:
- 8, 7 AGM 14.7V
- 6 Absorption time: 8 h
- 5 Adaptive charging: on
- 4 Dyn. current limit: on
- 3 UPS function: off
- 2 Voltage: 240V
- 1 Frequency: 50Hz

Step 2 Example 4:
- 8, 7 Tubular-plate 15V
- 6 Absorption time: 4 h
- 5 Fixed absorption time
- 4 Dyn. current limit: off
- 3 UPS function: on
- 2 Voltage: 240V
- 1 Frequency: 60Hz

To store the settings after the required values have been set: press the 'Down' button for 2 seconds (lower button to the right of the DIP switches). The temperature and low-battery LEDs will flash to indicate acceptance of the settings.

The DIP switches can be left in the selected positions, so that the ‘other settings’ can always be recovered.
6. MAINTENANCE

The Quattro does not require specific maintenance. It will suffice to check all connections once a year. Avoid moisture and oil/soot/vapours, and keep the device clean.

7. ERROR INDICATIONS

Important note:
When the battery is completely discharged (battery voltage less than 10V / 20V or 40V), the Quattro will start charging only when AC power is connected to AC-in-1.
For the Quattro to start charging when AC power is connected to AC-in-2, battery voltage must exceed 10V / 20V or 40V.

7.1 General error indications

With the procedures below, most errors can be quickly identified. If an error cannot be resolved, please refer to your Victron Energy supplier.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quattro will not switch over to generator or mains operation.</td>
<td>Circuit breaker or fuse in the AC-in input is open as a result of overload.</td>
<td>Remove overload or short circuit on AC-out-1 or AC-out-2, and reset fuse/breaker.</td>
</tr>
<tr>
<td>Inverter operation not initiated when switched on.</td>
<td>The battery voltage is excessively high or too low. No voltage on DC connection.</td>
<td>Ensure that the battery voltage is within the correct range.</td>
</tr>
<tr>
<td>“Low battery” LED flashes.</td>
<td>The battery voltage is low.</td>
<td>Charge the battery or check the battery connections.</td>
</tr>
<tr>
<td>“Low battery” LED lights.</td>
<td>The converter switches off because the battery voltage is too low.</td>
<td>Charge the battery or check the battery connections.</td>
</tr>
<tr>
<td>“Overload” LED flashes.</td>
<td>The converter load is higher than the nominal load.</td>
<td>Reduce the load.</td>
</tr>
<tr>
<td>“Overload” LED lights.</td>
<td>The converter is switched off due to excessively high load.</td>
<td>Reduce the load.</td>
</tr>
<tr>
<td>“Temperature” LED flashes or lights.</td>
<td>The environmental temperature is high, or the load is too high.</td>
<td>Install the converter in cool and well-ventilated environment, or reduce the load.</td>
</tr>
<tr>
<td>“Low battery” and “overload” LEDs flash intermittently.</td>
<td>Low battery voltage and excessively high load.</td>
<td>Charge the batteries, disconnect or reduce the load, or install higher capacity batteries. Fit shorter and/or thicker battery cables.</td>
</tr>
<tr>
<td>“Low battery” and “overload” LEDs flash simultaneously.</td>
<td>Ripple voltage on the DC connection exceeds 1.5Vrms.</td>
<td>Check the battery cables and battery connections. Check whether battery capacity is sufficiently high, and increase this if necessary.</td>
</tr>
<tr>
<td>“Low battery” and “overload” LEDs light.</td>
<td>The inverter is switched off due to an excessively high ripple voltage on the input.</td>
<td>Install batteries with a larger capacity. Fit shorter and/or thicker battery cables, and reset the inverter (switch off, and then on again).</td>
</tr>
<tr>
<td>One alarm LED lights and the second flashes.</td>
<td>The inverter is switched off due to alarm activation by the lighted LED. The flashing LED indicates that the inverter was about to switch off due to the related alarm.</td>
<td>Check this table for appropriate measures in regard to this alarm state.</td>
</tr>
<tr>
<td>The charger does not operate.</td>
<td>The AC input voltage or frequency is not within the range set.</td>
<td>Ensure that the AC input is between 185 VAC and 265 VAC, and that the frequency is within the range set (default setting 45-65Hz).</td>
</tr>
<tr>
<td></td>
<td>Circuit breaker or fuse in the AC-in input is open as a result of overload.</td>
<td>Remove overload or short circuit on AC-out-1 or AC-out-2, and reset fuse/breaker.</td>
</tr>
<tr>
<td></td>
<td>The battery fuse has blown.</td>
<td>Replace the battery fuse.</td>
</tr>
<tr>
<td></td>
<td>The distortion or the AC input voltage is too large (generally generator supply).</td>
<td>Turn the settings WeakAC and dynamic current limiter on.</td>
</tr>
<tr>
<td>The charger does not operate. “Bulk” LED flashes and “Mains on” LED illuminates.</td>
<td>Quattro is in “Bulk protection” mode thus, the maximum bulk charging time of 10 hours is exceeded. Such a long charging time could indicate a system error (e.g. a battery cell short-circuit).</td>
<td>Check your batteries. NOTE: You can reset the error mode by switching off and back on the Quattro. The standard Quattro factory setting of the “Bulk protection” mode is switched on. The “Bulk protection” mode can be switched off with help of VEConfigure only.</td>
</tr>
<tr>
<td>The battery is not completely charged.</td>
<td>Charging current excessively high, causing premature absorption phase. Poor battery connection. The absorption voltage has been set to an incorrect level (too low). The float voltage has been set to an incorrect level (too low). The available charging time is too short to fully charge the battery. The absorption time is too short. For adaptive charging this can be caused by an extremely high charging current with respect to battery capacity, so that bulk time is insufficient.</td>
<td>Set the charging current to a level between 0.1 and 0.2 times the battery capacity. Check the battery connections. Set the absorption voltage to the correct level. Set the float voltage to the correct level. Select a longer charging time or higher charging current. Reduce the charging current or select the ‘fixed’ charging characteristics.</td>
</tr>
<tr>
<td>The battery is overcharged:</td>
<td>The absorption voltage is set to an incorrect level (too high).</td>
<td>Set the absorption voltage to the correct level.</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>The float voltage is set to an incorrect level (too high).</td>
<td>Set the float voltage to the correct level.</td>
</tr>
<tr>
<td>Poor battery condition.</td>
<td>Replace the battery.</td>
<td></td>
</tr>
<tr>
<td>The battery temperature is too high (due to poor ventilation, excessively high environmental temperature, or excessively high charging current).</td>
<td>Improve ventilation, install batteries in a cooler environment, reduce the charging current, and connect the temperature sensor.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The charging current drops to 0 as soon as the absorption phase initiates.</th>
<th>The battery is over-heated (>50°C)</th>
<th>Install the battery in a cooler environment Reduce the charging current Check whether one of the battery cells has an internal short circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective battery temperature sensor</td>
<td>Disconnect the temperature sensor plug in the Quattro. If charging functions correctly after approximately 1 minute, the temperature sensor should be replaced.</td>
<td></td>
</tr>
</tbody>
</table>
7.2 Special LED indications
(for the normal LED indications, see section 3.4)

<table>
<thead>
<tr>
<th>LED Indications</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk and absorption LEDs flash synchronously (simultaneously).</td>
<td>Voltage sense error. The voltage measured at the voltage sense connection deviates too much (more than 7V) from the voltage on the positive and negative connection of the device. There is probably a connection error. The device will remain in normal operation. NOTE: If the "inverter on" LED flashes in phase opposition, this is a VE.Bus error code (see further on).</td>
</tr>
<tr>
<td>Absorption and float LEDs flash synchronously (simultaneously).</td>
<td>The battery temperature as measured has an extremely unlikely value. The sensor is probably defective or has been incorrectly connected. The device will remain in normal operation. NOTE: If the "inverter on" LED flashes in phase opposition, this a VE.Bus error code (see further on).</td>
</tr>
<tr>
<td>"Mains on" flashes and there is no output voltage.</td>
<td>The device is in "charger only" operation and mains supply is present. The device rejects the mains supply or is still synchronising.</td>
</tr>
</tbody>
</table>

7.3 VE.Bus LED indications

Equipment included in a VE.Bus system (a parallel or 3-phase arrangement) can provide so-called VE.Bus LED indications. These LED indications can be subdivided into two groups: OK codes and error codes.

7.3.1 VE.Bus OK codes

If the internal status of a device is in order but the device cannot yet be started because one or more other devices in the system indicate an error status, the devices that are in order will indicate an OK code. This facilitates error tracing in a VE.Bus system, since devices not requiring attention are easily identified as such.

Important: OK codes will only be displayed if a device is not in inverter or charging operation!

- A flashing "bulk" LED indicates that the device can perform inverter operation.
- A flashing "float" LED indicates that the device can perform charging operation.

NOTE: In principle, all other LEDs must be off. If this is not the case, the code is not an OK code. However, the following exceptions apply:

- The special LED indications above can occur together with the OK codes.
- The "low battery" LED can function together with the OK code that indicates that the device can charge.

7.3.2 VE.Bus error codes

A VE.Bus system can display various error codes. These codes are displayed with the "inverter on", "bulk", "absorption" and "float" LEDs.

To interpret a VE.Bus error code correctly, the following procedure should be followed:
1. The device should be in error (no AC output).
2. Is the "inverter on" LED flashing? If not, then there is no VE.Bus error code.
3. If one or more of the LEDs "bulk", "absorption" or "float" flashes, then this flash must be in phase opposition to the "inverter on" LED, i.e. the flashing LEDs are off if the "inverter on" LED is on, and vice versa. If this is not the case, then there is no VE.Bus error code.
4. Check the "bulk" LED, and determine which of the three tables below should be used.
5. Select the correct column and row (depending on the "absorption" and "float" LEDs), and determine the error code.
6. Determine the meaning of the code in the tables below.
All of the conditions below must be met:

1. The device is in error! (No AC output)
2. Inverter LED flashes (in opposition to any flashing of the Bulk, Absorption or Float LED)
3. At least one of the LEDs Bulk, Absorption and Float is on or flashing

<table>
<thead>
<tr>
<th>Bulk LED off</th>
<th>Bulk LED flashes</th>
<th>Bulk LED on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption LED</td>
<td>off</td>
<td>flashing</td>
</tr>
<tr>
<td>Bulk LED</td>
<td>off</td>
<td>flashing</td>
</tr>
<tr>
<td>Float LED</td>
<td>off</td>
<td>flashing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Device is switched off because one of the other phases in the system has switched off.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Device is switched off because one of the other phases in the system has switched off.</td>
</tr>
<tr>
<td>3</td>
<td>Not all, or more than, the expected devices were found in the system.</td>
</tr>
<tr>
<td>4</td>
<td>No other device whatsoever detected.</td>
</tr>
<tr>
<td>5</td>
<td>Overvoltage on AC-out.</td>
</tr>
<tr>
<td>10</td>
<td>System time synchronisation problem occurred.</td>
</tr>
<tr>
<td>14</td>
<td>Device cannot transmit data.</td>
</tr>
<tr>
<td>17</td>
<td>One of the devices has assumed 'master' status because the original master failed.</td>
</tr>
<tr>
<td>18</td>
<td>Overvoltage has occurred.</td>
</tr>
<tr>
<td>22</td>
<td>This device cannot function as 'slave'.</td>
</tr>
<tr>
<td>24</td>
<td>Switch-over system protection initiated.</td>
</tr>
<tr>
<td>25</td>
<td>Firmware incompatibility. The firmware of one of the connected devices is not sufficiently up to date to operate in conjunction with this device.</td>
</tr>
<tr>
<td>26</td>
<td>Internal error.</td>
</tr>
</tbody>
</table>

Cause/solution:

- Check the failing phase.
- The system is not properly configured. Reconfigure the system.
- Check the communication cables and switch all equipment off, and then on again.
- Check the AC cables.
- Should not occur in correctly installed equipment. Check the communication cables.
- Check the communication cables (there may be a short circuit).
- Check the failing unit. Check the communication cables.
- Check AC cables.
- This device is an obsolete and unsuitable model. It should be replaced.
- Should not occur in correctly installed equipment. Switch all equipment off, and then on again. If the problem recurs, check the installation. Possible solution: increase lower limit of AC input voltage to 210VAC (factory setting is 180VAC)
- 1) Switch all equipment off. 2) Switch the device returning this error message on. 3) Switch on all other devices one by one until the error message reoccurs. 4) Update the firmware in the last device that was switched on.
- Should not occur. Switch all equipment off, and then on again. Contact Victron Energy if the problem persists.
8. TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Quattro</th>
<th>12/3000/120-50/50 230V</th>
<th>24/3000/70-50/50 230V</th>
<th>48/3000/35-50/50 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerControl / PowerAssist</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Transfer switch</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC inputs (2x)</td>
<td>Input voltage range: 187–265 VAC, Input frequency: 45 – 65 Hz, Power factor: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum feed through current (A)</td>
<td>AC-in-1: 50A, AC-in-2: 50A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum PowerAssist current (A)</td>
<td>AC-in-1: 5,3A, AC-in-2: 5,3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INVERTER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage range (V DC)</td>
<td>9,5 – 17</td>
<td>19 – 33</td>
<td>38 – 66</td>
</tr>
<tr>
<td>Output power at 25°C (VA) (3)</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Output power at 25°C (W)</td>
<td>2400</td>
<td>2400</td>
<td>2400</td>
</tr>
<tr>
<td>Output power at 40°C (W)</td>
<td>2200</td>
<td>2200</td>
<td>2200</td>
</tr>
<tr>
<td>Output power at 65°C (W)</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
</tr>
<tr>
<td>Peak power (W)</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>Maximum efficiency (%)</td>
<td>93</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>Zero-load power (W)</td>
<td>20</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Zero-load power in AES mode (W)</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Zero-load power in Search mode (W)</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>CHARGER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge voltage 'absorption' (V DC)</td>
<td>14,4</td>
<td>28,8</td>
<td>57,6</td>
</tr>
<tr>
<td>Charge voltage 'float' (V DC)</td>
<td>13,8</td>
<td>27,6</td>
<td>55,2</td>
</tr>
<tr>
<td>Storage mode (V DC)</td>
<td>13,2</td>
<td>26,4</td>
<td>52,8</td>
</tr>
<tr>
<td>Charge current house battery (A) (4)</td>
<td>120</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>Charge current starter battery (A)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery temperature sensor</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxiliary AC output</td>
<td>Max load: 25A, Switches off when in inverter mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmable relay (5)</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection (a - g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Characteristics</td>
<td>Operating temp.: -40 to +65°C (fan assisted cooling), Humidity (non condensing): max 95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCLOSURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Characteristics</td>
<td>Material & Colour: aluminium (blue RAL 5012), Protection: IP 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery-connection</td>
<td>Four M8 bolts (2 plus and 2 minus connections)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 V AC-connection</td>
<td>Screw terminals 13mm² (6 AWG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (hxwxd in mm)</td>
<td>362 x 258 x 218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STANDARDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>EN 60335-1, EN 60335-2-29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission / Immunity</td>
<td>EN 55014-1, EN 55014-2, EN 61000-3-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Can be adjusted to 60Hz and to 240V
2) Protection
 a. Output short circuit
 b. Overload
 c. Battery voltage too high
 d. Battery voltage too low
 e. Temperature too high
 f. 230VAC on inverter output
 g. Input voltage ripple too high
3) Non-linear load, crest factor 3:1
4) At 25°C ambient
5) Programmable relay which can be set for general alarm, DC undervoltage or genset start/stop function
 AC rating: 230V/4A
 DC rating: 4A up to 35VDC and 1A up to 60VDC
OPMERKING:
Deze handleiding is bedoeld voor producten met firmware xxxx400 of hoger (waarbij x staat voor een willekeurig getal).
Het firmwarenummer is te vinden op de microprocessor, na het verwijderen van het voorpaneel.
Oudere eenheden, waarvan het 7-cijferige nummer begint met 26 of 27, kunnen worden geüpdate. Het nummer begint met 19 of 20 heeft u een oude microprocessor en is het niet mogelijk om deze te updaten naar 400 of hoger.

1. VEILIGHEIDSAANWIJZINGEN

Algemeen

Lees eerst de bij dit product geleverde documentatie, zodat u bekend bent met de veiligheidsaanwijzingen en aanwijzingen voordat u het product in gebruik neemt.

Dit product is ontworpen en getest conform de internationale normen. De apparatuur mag enkel worden gebruikt voor de bedoelde toepassing.

WAARSCHUWING: KANS OP ELEKTRISCHE SCHOK
Het product wordt gebruikt in combinatie met een permanente energiebron (accu). Zelfs als de apparatuur is uitgeschakeld, kan er een gevaarlijke elektrische spanning optreden bij de ingangs- en of uitgangsklemmen. Schakel altijd de wisselspanningsvoeding uit en ontkoppel de accu voordat u onderhoudswerkzaamheden uitvoert.

Het product bevat geen interne onderdelen die door de gebruiker kunnen worden onderhouden. Verwijder het paneel aan de voorkant niet en stel het product niet in bedrijf als niet alle panelen zijn gemonteerd. Alle onderhoudswerkzaamheden dienen door gekwalificeerd personeel te worden uitgevoerd.

Gebruik het product nooit op plaatsen, waar gas- of stofexplosies kunnen optreden. Raadpleeg de specificaties van de accufabrikant om te waarborgen dat de accu geschikt is voor gebruik met dit product. Neem altijd de veiligheidsvoorschriften van de accufabrikant in acht.

WAARSCHUWING: til geen zware voorwerpen zonder hulp.

Installatie

Lees de installatieaanwijzingen voordat u met de installatie begint.

Het is een product uit veiligheidsklasse I (dat wordt geleverd met een aardingsklem ter beveiliging). De in- en/of uitgangsklemmen van de wisselstroom moeten zijn voorzien van een ononderbreekbare aarding ter beveiliging. Aan de buitenkant van het product bevindt zich een extra aardpunt. Als u vermoedt dat de aardbeveiliging is beschadigd, moet het product buiten bedrijf worden gesteld en worden beveiligd tegen per ongeluk opnieuw inschakelen; neem hiervoor contact op met gekwalificeerd onderhoudspersoneel.

Zorg ervoor dat de aansluitkabels zijn voorzien van zekeringen en stroomonderbrekers. Vervang nooit een beveiliging door een ander type component. Raadpleeg de handleiding voor het juiste onderdeel.

Controleer voordat u het apparaat inschakelt of de beschikbare spanningsbron overeenkomt met de configuratie-instellingen van het product, zoals beschreven in de handleiding.

Zorg ervoor dat de apparatuur wordt gebruikt onder de juiste bedrijfssomstandigheden. Gebruik het product nooit in een vochtige of stoffige omgeving.

Zorg ervoor dat er rondom het product steeds voldoende ruimte is voor ventilatie en dat de ventilatieopeningen niet geblokkeerd zijn.

Installatie is een hittebestendige omgeving. Zorg er daarom voor dat zich geen chemische stoffen, kunststofonderdelen, gordijnen of andere soorten textiel enz. in de onmiddellijke omgeving van de apparatuur bevinden.

Vervoer en opslag

Zorg er bij opslag of transport van het product voor dat netstroom- en accukabels zijn losgekoppeld.

Er kan geen aansprakelijkheid worden aanvaard voor transportschade als de apparatuur wordt vervoerd in een andere dan de originele verpakking.

Sla het product op in een droge omgeving; de opslagtemperatuur dient te liggen tussen -20°C en 60°C.

Raadpleeg de handleiding van de accufabrikant voor informatie over transport, opslag, opladen, herladen en afvalverwijdering van de accu.
2. BESCHRIJVING

2.1 Algemeen

De basis van de Quattro is een zeer krachtige sinusomvormer, acculader en omschakelaautomaat in een compacte behuizing. Daarnaast heeft de Quattro een groot aantal vaak unieke mogelijkheden:

Twee AC-ingangen: geïntegreerd overschakelsysteem tussen walstroom en aggregaat

De Quattro heeft twee AC-ingangen (AC-in-1 en AC-In-2) om twee onafhankelijke spanningsbronnen aan te kunnen sluiten. Bijvoorbeeld twee aggregaten of een netvoeding en een aggregaat. De Quattro kiest automatisch de ingang, waar spanning beschikbaar is.

Als er spanning beschikbaar is op beide ingangen, kiest de Quattro de AC-in-1-ingang, waarop normaal gesproken de voeding is aangesloten.

Twee AC-uitgangen

Naast de gebruikelijke ononderbroken uitgang (AC-out-1), is er een extra uitgang (AC-out-2) beschikbaar die aansluiting van de belasting verbreekt wanneer de accu in bedrijf is. Voorbeeld: een elektrische boiler die enkel in bedrijf mag zijn als het aggregaat draait of er walstroom beschikbaar is.

Automatisch en onderbrekingsvrij omschakelen

In geval van een netspanningsstoring of als het aggregaat wordt uitgeschakeld, zal de Quattro overschakelen op omvormerbedrijf en de voeding van de aangesloten apparaten overnemen. Dit gaat zo snel dat computers en andere elektronische apparaten ongestoord blijven functioneren (Uninterruptible Power Supply of UPS-functionality). Dit maakt de Quattro zeer geschikt als noodstroomsysteem in industriële en telecommunicatie toepassingen. De maximale wisselstroom die geschakeld kan worden bedraagt 30 A.

Driefaseschakeling

Drie eenheden kunnen worden geconfigureerd voor driefase-uitgang. Maar dat is nog niet alles: tot 6 sets van drie eenheden kunnen parallel worden geschakeld voor een omvormervermogen van 45 kW / 54 kVA en een laadcapaciteit van meer dan 1200 A.

PowerControl – Maximaal benutten van beperkte walstroom

De Quattro kan enorm veel laadstroom leveren. Dat betekent een zware belasting voor de walaansluiting of het aggregaat. Voor beide AC-ingangen kan daarom een maximale stroom worden ingesteld. De Quattro houdt dan rekening met andere stroomverbruikers en gebruikt voor het opladen enkel de stroom die nog ‘over’ is.
- Ingang AC-in-1, waarop meestal een aggregaat is aangesloten, kan met DIP-schakelaars, met VE.Net of met een pc worden ingesteld op een vast maximum, zodat het aggregaat nooit overbelast wordt.

PowerAssist – Doe meer met uw aggregaat en walstroom: met de “meehelp”-functie van de Quattro

De Quattro werkt parallel aan het aggregaat of de walstroom. Een stroomtekort wordt automatisch gecompenseerd: de Quattro verbruikt extra stroom van de accu en helpt zo mee. Het te veel aan stroom wordt gebruikt om de accu weer op te laden.

Met deze unieke functie is het ‘walstroomprobleem’ voorgoed opgelost: elektrisch gereedschap, afwasmachine, wasmachine, elektrische kookplaat kunnen nu allemaal draaien met 16A-walstroom of zelfs nog minder. Bovendien kan een kleiner aggregaat worden geïnstalleerd.

Drie programmeerbare relais

De Quattro is voorzien van 3 programmeerbare relais. De relais kunnen echter voor allerlei andere toepassingen worden geprogrammeerd, bijvoorbeeld als startrelais voor een aggregaat.

Programmeerbare analoge/digitale ingangs/uitgangspoorten

De Quattro is voorzien van 2 analoge/digitale ingangs/uitgangspoorten. Deze poorten kunnen worden gebruikt voor meerdere doeleinden. Een toepassing is communicatie met het BMS of een lithiumionaccu.

Frequentiewisseling

Als zonneomvormers zijn aangesloten op de uitgang van een Multi of Quattro wordt het teveel aan zonne-energie gebruikt om de accu’s weer op te laden. Zodra de absorptiespanning is bereikt, schakelen de Multi of Quattro de zonneomvormer uit door de uitgangsfrequentie met 1 Hz aan te passen (bijvoorbeeld van 50 Hz naar 51 Hz). Zodra de accuspanning iets is gedaald, keert de frequentie terug naar normaal en worden de zonneomvormers weer gestart.

Ingebouwde accumonitor (optioneel)

De ideale oplossing als Multi’s of Quattro’s onderdeel uitmaken van een hybride systeem (dieselaggregaat, omvormer/laders, opslagaccu en alternatieve energie). De ingebouwde accumonitor kan zo worden ingesteld dat deze het aggregaat start en stopt:
- Start van een vooringesteld % van het ontladingsniveau en/of
- start (met een vooringestelde vertraging) bij een vooringestelde accuspanning en/of
- start (met een vooringestelde vertraging) bij een vooringestelde belastingsniveau.
- Stop bij een vooringestelde accuspanning of
- stop (met een vooringestelde vertraging) nadat de bulklading is voltooid en/of
- stop (met een vooringestelde vertraging) bij een vooringestelde belastingsniveau.

Zonne-energie

De Quattro is uiterst geschikt voor zonne-energie toepassingen. Deze kan worden gebruikt voor het bouwen van autonome systemen alsmede van netgekoppelde systemen.
Alle instellingen kunnen worden gewijzigd met een pc en gratis software die kan worden gedownload op onze website.

De juiste hoeveelheid lading: variabele absorptietijd accu’s. De adaptieve functie past het laadproces automatisch aan aan het accugebruik. Het adaptieve accubeheersysteem, aangedreven door een microprocessor, kan worden ingesteld op verschillende soorten accu’s. Na een diepe ontlading wordt de absorptietijd automatisch verlengd om de accu volledig op te laden. Bij geringe ontlading van de accu wordt de absorptie kort gehouden om overlading en overmatige gasvorming te voorkomen.

Alle instellingen, met uitzondering van het multifunctionele relais, kunnen worden gewijzigd met een VE.Net-paneel. Als, om de laadtijd te verkorten, wordt gekozen voor een hoge laadstroom in combinatie met een hoge absorptiespanning, dan zal de Quattro het teveel gebruiken om de accu’s op te laden; in het geval van een tekort zal de Quattro extra stroom via de accu-energiebronnen leveren.

Programmeerbaar met DIP-schakelaars, VE.Net-paneel of pc
De Quattro wordt gebruiksklaar geleverd. Drie eigenschappen staan ter beschikking om, indien gewenst, bepaalde instellingen te kunnen wijzigen:

- De meest belangrijke instellingen (inclusief parallel bedrijf van tot drie apparaten en 3-fasebedrijf) kan heel eenvoudig met Quattro DIP-schakelaars worden gewijzigd.
- Alle instellingen, met uitzondering van het multifunctionele relais, kunnen worden gewijzigd met een VE.Net-paneel.
- Alle instellingen kunnen worden gewijzigd met een pc en gratis software die kan worden gedownload op onze website

www.victronenergy.com

2.2 Acculader
Adaptieve 4-traps laadkarakteristieken: bulk – absorptie – druppel – opslag
Het adaptieve accubeheersysteem, aangedreven door een microprocessor, kan worden ingesteld op verschillende soorten accu’s. De adaptieve functie past het laadproces automatisch aan aan het accugebruik.

De juiste hoeveelheid lading: variabele absorptietijd
Bij geringe ontlading van de accu wordt de absorptie kort gehouden om overlading en overmatige gasvorming te voorkomen. Na een diepe ontlading wordt de absorptietijd automatisch verlengd om de accu volledig op te laden.

Schade door overmatige gasvorming beperken: met de BatterySafe-modus
Als, om de laadtijd te verkorten, wordt gekozen voor een hoge laadstroom in combinatie met een hoge absorptiespanning, dan wordt schade door overmatige gasvorming voorkomen door de stijgingssnelheid van de spanning automatisch te beperken als de gasvormingsspanning is bereikt.

Minder onderhoud en veroudering als de accu niet wordt gebruikt: met de opslag-modus
De opslag-modus wordt geactiveerd als de accu gedurende 24 uur niet wordt ontladen. In de opslag-modus wordt de open spanning verminderd tot 2.2 V/cel (13.2 V voor 12V-accu) om gasvorming en corrosie van de positieve platen tot een minimum te beperken. Eén keer per week wordt de spanning opnieuw verhoogd tot absorptieniveau om de accu weer ‘bij te laden’. Dit voorkomt stratificatie van het elektrolyt en sulfatering, de hoofdoorzaak van voortijdig falen van de accu.

Twee DC-uitgangen om twee accu’s op te laden
De hoofd-DC-aansluitklem kan de volledige uitgangsstroomleveren. De tweede uitgang, bedoeld voor het opladen van een startaccu, is beperkt tot 4 A en heeft een iets lagere uitgangsspanning.

Langere levensduur van de accu: door temperatuurcompensatie
De temperatuursensor (meegeleverd met het product) dient om de laadspanning te verminderen als de accutemperatuur stijgt. Dit is vooral belangrijk voor onderhoudsvrije accu’s die anders mogelijk uitdrogen door overlading.

Accuspanningsdetectie: de juiste laadspanning
Het spanningsverlies door de kabelweerstand kan worden gecompenseerd door gebruik te maken van de spanningsdetectievoorziening om de spanning rechtstreeks op de DC-bus of op de aansluitklemmen van de accu te kunnen meten.

Meer over accu’s en opladen
In ons boek ‘Altijd Stroom’ kunt u meer lezen over accu’s en het opladen van accu’s. Het is gratis verkrijgbaar op onze website (zie www.victronenergy.com -> Support -> Technische Informatie). Voor meer informatie over adaptief opladen zie de Technische Informatie op onze website.

2.3 Eigen verbruik – zonne-energie-opslagystemen
Voor meer informatie zie ons witboek Eigen verbruik en onafhankelijk zijn van het elektriciteitsnet met de Victron Energy Storage Hub (opslaghub).
De bijbehorende software kan worden gedownload van onze website.

Als de Multi/Quattro wordt gebruikt in een configuratie, waarin deze energie teruggeeft aan het elektriciteitsnet, moet conformiteit met de netcode mogelijk zijn door de netcode van het land, waarin deze wordt gebruikt, in te stellen via VEConfigure. Op deze manier kan de Multi/Quattro aan de plaatselijke voorschriften voldoen.

Als de plaatselijke netcode niet wordt ondersteund door de Multi/Quattro, dient een extern gecertificeerd interface-apparaat te worden gebruikt om de Multi/Quattro op het elektriciteitsnet aan te sluiten.

De Multi/Quattro kan ook worden gebruikt als bidirectionele omvormer in parallel bedrijf met het elektriciteitsnet, geïntegreerd in een door de klant ontworpen systeem (PLC of ander systeem) dat de regellus en meting van het elektriciteitsnet verzorgt, zie http://www.victronenergy.com/live/system_integration:hub4_grid_parallel
3. BEDIENING

3.1 Schakelaar “On / stand by / charger only”

Als de schakelaar op “on” wordt gezet, is het apparaat volledig functioneel. De omvormer wordt ingeschakeld en de led “inverter on” gaat branden.

Als er op de “AC-in”-aansluiting spanning wordt aangesloten, zal deze, als de waarde binnen de specificaties valt, worden doorgeschakeld naar de “AC-out”-aansluiting. De omvormer wordt uitgeschakeld, de led “mains on” gaat branden en de lader begint met opladen. Afhankelijk van de laadmodus gaan de leds “bulk” (bulklading), “absorption” (absorptielading) of “float” (druppellading) branden.

Als de spanning op de “AC-in”-aansluiting wordt afgewezen, zal de omvormer worden ingeschakeld.

Als de schakelaar op “charger only” wordt gezet, zal alleen de acculader van de Quattro worden ingeschakeld (als er netspanning beschikbaar is). In deze modus wordt de ingangsspanning tevens doorgeschakeld naar de “AC-out”-aansluiting.

OPMERKING: Als alleen de laadfunctie nodig is, moet erop worden gelet dat de schakelaar in de stand “charger only” wordt gezet. Hiermee voorkomt u dat bij het wegvallen van de netspanning de omvormer wordt ingeschakeld en uw accu’s leeg raken.

3.2 Afstandsbediening

De afstandsbediening is mogelijk met een 3-wegschakelaar of met het Multi Control-paneel. Het Multi Control-paneel heeft een eenvoudige draaiknop, waarmee de maximale stroom van de AC-ingang kan worden ingesteld: zie PowerControl en PowerAssist in hoofdstuk 2.

3.3 Egalisatie en geforceerde absorptie

3.3.1 Egalisatie

Tractie-accu’s moeten regelmatig extra worden opgeladen. In de egalisatiemodus gaat de Quattro gedurende een uur met een verhoogde spanning laden (1 V boven de absorptiespanning voor een 12V-accu, 2 V voor een 24V-accu). De laadstroom wordt dan beperkt tot 1/4 van de ingestelde waarde: De leds “bulk” en “absorption” gaan dan afwisselend knipperen.

De egalisatiemodus levert een hogere laadspanning dan de meeste gelijkstroomverbruikers aankunnen. Deze moeten daarom worden losgekoppeld voordat er extra wordt opgeladen.

3.3.2 Geforceerde absorptie

Onder bepaalde omstandigheden kan het wenselijk zijn om de accu voor een bepaalde tijd met een absorptiespanning te laden. In de modus Geforceerde Absorptie gaat de Quattro gedurende de ingestelde maximale absorptietijd met de normale absorptiespanning laden. De led “absorption” gaat branden.

3.3.3 Egalisatie of geforceerde absorptie activeren

De Quattro kan zowel via de afstandsbediening als met de schakelaar op het voorpaneel in deze beide toestanden worden gebracht. Voorwaarde is wel dat alle schakelaars (op het voorpaneel, de afstandsbediening als op het paneel) in de stand “on” worden gezet en geen enkele schakelaar in de stand “charger only” staat. Om de Quattro is deze toestand te brengen, moet de onderstaande procedure worden gevolgd.

Als de schakelaar zich niet in de juiste stand bevindt nadat u deze procedure hebt gevolgd, kan deze eenvoudig eenmalig worden omgeschakeld. Hiermee wordt de laadtoestand niet gewijzigd.

OPMERKING: het omschakelen van “on” naar “charger only” en terug, zoals hieronder beschreven, dient op een snelle manier te gebeuren. De schakelaar moet vooral voor het uitschakelen van de middenstand als het ware worden ‘overgeslagen’. Als de schakelaar ook maar even in de stand “off” blijft staan, loopt er het risico dat het apparaat wordt uitgeschakeld. In dat geval dient u weer bij stap 1 te beginnen. Met name bij gebruik van de schakelaar op het voorpaneel op de Compact is enige oefening gewenst. Bij gebruik van de afstandsbediening is dit geen probleem.

Procedure:

Controleer of alle schakelaars (bv. op het voorpaneel, op de afstandsbediening of de schakelaar op het afstandspaneel voor zover aanwezig) in de stand “on” staan.

Het activeren van de egalisatie of de geforceerde is alleen zinvol als de normale laadcyclus is voltooid (de lader bevindt zich dan in de modus “Float”).

Activeren:

a. Zet de schakelaar snel van “on” naar “charger only” en laat de schakelaar 0,5 tot 2 seconden in deze stand staan.

b. Zet de schakelaar snel weer terug van “charger only” naar “on” en laat de schakelaar 0,5 tot 2 seconden in deze stand staan.

c. Zet de schakelaar nog eens snel van “on” naar “charger only” en laat de schakelaar in deze stand staan.

Op de Quattro (en, indien aangesloten, op het MultiControl-paneel) gaan nu de drie leds “Bulk”, “Absorption” en “Float” 5 keer knipperen.

Vervolgens gaan de leds “Bulk”, “Absorption” en “Float” elk gedurende 2 seconden branden:

a. Als de schakelaar op “on” wordt gezet, terwijl de led “Bulk” brandt, schakelt de lader over op egalisatie.

b. Als de schakelaar op “charger only” wordt gezet, terwijl de led “Absorption” brandt, schakelt de lader over op geforceerde absorptie.

c. Als de schakelaar op “on” wordt gezet nadat de drie leds zijn gaan branden, schakelt de lader over op druppellading (“Float”).

d. Als de schakelaar niet is omgezet, blijft de Quattro in de modus “charger only” en schakelt daarna over op druppellading.
3.4 Led-aanduidingen en hun betekenis

- **led uit**
- **led knippert**
- **led brandt**

<table>
<thead>
<tr>
<th>Status</th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>Bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>Float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

De omvormer is ingeschakeld en levert stroom aan de belasting.

<table>
<thead>
<tr>
<th>Status</th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>Bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>Float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

Het nominale vermogen van de omvormer is overschreden. De led “overload” (overbelasting) knippert.

<table>
<thead>
<tr>
<th>Status</th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>Bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>Float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

De omvormer is uitgeschakeld door overbelasting of kortsluiting.

<table>
<thead>
<tr>
<th>Status</th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>Bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>Float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

De accu is bijna leeg.

<table>
<thead>
<tr>
<th>Status</th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>Bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>Float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

De omvormer is uitgeschakeld door een te lage accuspanning.

<table>
<thead>
<tr>
<th>Status</th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>Bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>Float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

De interne temperatuur bereikt een kritiek niveau.
De omvormer is uitgeschakeld door een veel te hoge interne temperatuur.

– Als de leds afwisselend knipperen, is de accu bijna leeg en is het nominaal vermogen overschreden.
– Als de leds “overload” en “low battery” tegelijkertijd knipperen, is er een veel te hoge rimpelspanning bij de accuaansluiting.

De omvormer is uitgeschakeld door een veel te hoge rimpelspanning bij de accuaansluiting.
De wisselspanning bij AC-in-1 of AC-in-2 is doorgeschakeld en de lader bevindt zich in de bulkladingsfase.

De wisselspanning bij AC-in-1 of AC-in-2 is doorgeschakeld en de lader werkt, maar de ingestelde absorptiespanning is nog niet bereikt (accubeveiligingsmodus).

De wisselspanning bij AC-in-1 of AC-in-2 is doorgeschakeld en de lader bevindt zich in de absorptieladingsfase.

De wisselspanning bij AC-in-1 of AC-in-2 is doorgeschakeld en de lader bevindt zich in de druppellaad- of opslagfase.

De wisselspanning bij AC-in-1 of AC-in-2 is doorgeschakeld en de lader bevindt zich in de egalisatiemodus.
Speciale aanduidingen

<table>
<thead>
<tr>
<th>Ingesteld met beperkte ingangsstroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>charger</td>
</tr>
<tr>
<td>☀ mains on</td>
</tr>
<tr>
<td>○ Bulk</td>
</tr>
<tr>
<td>○ absorption</td>
</tr>
<tr>
<td>○ Float</td>
</tr>
</tbody>
</table>

De wisselspanning bij AC1-in-1 of AC-in-2 is doorgeschakeld. De AC-ingangsstroom is gelijk aan de belastingsstroom. De lader wordt nu omlaag gestuurd naar 0 A.

<table>
<thead>
<tr>
<th>Ingesteld om extra stroom te leveren</th>
</tr>
</thead>
<tbody>
<tr>
<td>charger</td>
</tr>
<tr>
<td>● mains on</td>
</tr>
<tr>
<td>○ Bulk</td>
</tr>
<tr>
<td>○ absorption</td>
</tr>
<tr>
<td>○ Float</td>
</tr>
</tbody>
</table>

De wisselspanning bij AC-in-1 of AC-in-2 is doorgeschakeld, maar de belasting vereist meer stroom dan het elektriciteitsnet kan leveren. De omvormer wordt nu ingeschakeld om extra stroom te leveren.
4. INSTALLATIE

Dit product mag uitsluitend worden geïnstalleerd door een gekwalificeerde elektromonteur.

4.1 Locatie

De Quattro dient in een droge, goed geventileerde ruimte te worden geïnstalleerd, zo dicht mogelijk bij de accu's. Rondom het apparaat dient een vrije ruimte van tenminste 10 cm voor koeldoeleinden aanwezig te zijn.

Een veel te hoge omgevingstemperatuur heeft de volgende consequenties:
- kortere levensduur
- lagere laadstroom
- lager piekvermogen of omvormeruitschakeling.

Plaats het apparaat nooit direct boven de accu's.

De Quattro is geschikt voor wandmontage. Voor de montage bevat de behuizing aan de achterkant een haak en twee gaten (zie bijlage G). Het apparaat kan horizontaal of verticaal worden geplaatst. Voor een optimale koeling wordt de voorkeur gegeven aan verticale plaatsing.

De binnenste gedeelte van het apparaat dient na installatie goed toegankelijk te blijven.

De afstand tussen de Quattro en de accu dient zo klein mogelijk te zijn om het spanningsverlies via de accukabels tot een minimum te beperken.

Installeer het product in een hittebestendige omgeving. Zorg er daarom voor dat zich geen chemische stoffen, kunststofonderdelen, gordijnen of andere soorten textiel enz. in de onmiddellijke omgeving bevinden.

De Quattro heeft geen interne DC-zekering. De DC-zekering dient buiten de Quattro te worden geïnstalleerd.

4.2 De accukabels aansluiten

Om het volledige potentieel van de Quattro te kunnen benutten, moeten accu's met voldoende capaciteit en accukabels met de juiste doorsnede worden gebruikt.

Zie tabel:

<table>
<thead>
<tr>
<th>Aanbevolen accu capaciteit (Ah)</th>
<th>12/3000/120</th>
<th>24/3000/70</th>
<th>48/3000/35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanbevolen DC- zekering</td>
<td>400 A</td>
<td>300 A</td>
<td>125 A</td>
</tr>
<tr>
<td>Aanbevolen doorsnede (mm2) per + en - aansluitklem</td>
<td>2x 50 mm2</td>
<td>50 mm2</td>
<td>35 mm2</td>
</tr>
<tr>
<td>0 – 5 m*</td>
<td>2x 70 mm2</td>
<td>2x 50 mm2</td>
<td>2x 35 mm2</td>
</tr>
<tr>
<td>5 – 10 m*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* '2x' betekent twee plus- en twee min-kabels.

Procedure
Ga voor het aansluiten van de accukabels als volgt te werk:

Gebruik een momentsleutel met geïsoleerde steeksleutel om kortsluiting bij de accu te voorkomen.

Maximaal aanhaalmoment: 9 Nm
Voorkom kortsluiting van de accukabels. Om kortsluiting van de accu te voorkomen, dient een geïsoleerde ringsleutel te worden gebruikt.

- Draai de vier onderste schroeven van het voorpaneel van de unit los en verwijder het onderste voorpaneel.
- Sluit de accukabels als volgt aan: + (rood) op de rechte klem en - (zwart) op de linker klem (Zie bijlage A).
- Draai de aansluitingen na montage van de bevestigingsonderdelen vast.
4.3 Aansluiting van de AC-kabels

De Quattro is een product uit veiligheidsklasse I (dat wordt geleverd met een aardingsklem ter beveiliging). De wisselstroomingangs- en/of -uitgangsklemmen en/of het aardings punt aan de buitenkant van het product moeten om veiligheidsredenen voorzien zijn van een onderbrekingsvrij aardingspunt. Zie hiervoor de volgende aanwijzingen:

De Quattro is voorzien van een aardingsrelais (zie bijlage) dat de nuluitgang automatisch met de behuizing verbindt als er geen externe wisselstroomvoorziening beschikbaar is. Als er wel een externe wisselstroomvoorziening beschikbaar is, gaat het aardingsrelais open voordat het ingangsveiligheidsrelais zich sluit (relais H in bijlage B). Dit zorgt voor een goede werking van de op de uitgang aangesloten aardlekschakelaar.

In een vaste installatie kan een ononderbreekbare aarding worden gewaarborgd met de aarddraad van de wisselspanningsingang. Anders moet de behuizing worden geaard.

In een mobiele installatie (bijvoorbeeld met een walstroostekker) zal onderbreking van de walaansluiting tegelijk ook de aardverbinding verbreken. In dat geval moet de behuizing worden verbonden met het chassis (van het voertuig) of met de romp of aardplaat (van de boot).

Over het algemeen is de bovenstaand beschreven verbinding met de walaardingsaansluiting niet aan te bevelen voor boten in verband met de galvanische corrosie. De oplossing hiervoor is het gebruik van een scheidingstransformator.

De omvormer komt met een geïntegreerde scheidingstransformator voor netfrequentie. Dit voorkomt de mogelijkheid van DC-stroom op AC-stroompoorten. Daarom kunnen aardlekschakelaars van het type A worden gebruikt.

AC-in-1 (zie bijlage A)

Als er wisselstroomspanning beschikbaar is bij deze klemmen, zal de Quattro deze aansluiting gebruiken. Over het algemeen zal een generator worden aangesloten op AC-in-1. De ingang AC-in-1 moet zijn beveiligd met een zekering of magnetische contactverbreker voor 50 A of minder en de doorsnede van de kabel moet hieraan zijn aangepast. Als de ingangswisselspanning lager ligt, moeten de zekering of magnetische contactverbreker hieraan worden aangepast.

AC-in-2 (zie bijlage A)

Als er wisselstroomspanning beschikbaar is bij deze klemmen, zal de Quattro deze aansluiting gebruiken, behalve als er ook spanning bij de AC-in-1 beschikbaar is. De Quattro zal dan automatisch AC-in-1 kiezen. Over het algemeen wordt de netvoeding of walspanning aangesloten op de AC-in-2. De ingang AC-in-2 moet zijn beveiligd met een zekering of magnetische contactverbreker voor 50 A of minder en de doorsnede van de kabel moet hieraan zijn aangepast. Als de ingangswisselspanning lager ligt, moeten de zekering of magnetische contactverbreker hieraan worden aangepast.

Opmerking: De Quattro start misschien niet als er alleen wisselstroom bij AC-in-2 beschikbaar is en de gelijkstroomaccuspanning 10% of meer onder de nominale spanning ligt (minder dan 11 volt in geval van een 12 volt accu).

Oplossing: verbind de wisselstroomvoeding met AC-in-1 of laad de accu op.

AC-out-1 (zie bijlage A)

De wisselstroomvermogenskabel kan direct worden verbonden met het klemmenblok “AC-out”. Met de PowerAssist-functie kan de Quattro tot 3 kVA (dat is 3000 / 230 = 13 A) bij piekvermogensbehoefte aan de uitgang toevoegen. Samen met een maximale ingangsstroom van 50 A betekent dit dat de uitgang tot 50 + 13 = 63 A kan leveren.

Een aardlekschakelaar en een zekering of contactverbreker passend bij de verwachte belasting moet in serie worden opgenomen in het uitgangsvermogen en de doorsnede van de kabel moet hieraan worden aangepast. Het maximaal toelaatbare vermogen van de zekering of contactverbreker is 63 A.

AC-out-2 (zie bijlage A)

Procedure

Gebruik een driaderige kabel. De aansluitklemmen zijn duidelijk gecodeerd:

- **PE:** aarde
- **N:** nulleider
- **L:** fase-/spanningsgeleider
4.4 Aansluitopties

4.4.1 Startaccu (aansluitklem E, zie bijlage A)
De Quattro heeft een aansluiting voor het opladen van een startaccu. De uitgangsstroom is beperkt tot 4 A.

4.4.2 Spanningsdetectie (aansluitklem E, zie bijlage A)
Voor het compenseren van eventuele kabelverliezen tijdens het opladen kunnen twee detectiedraden worden aangesloten, waarmee de spanning direct op de accu of op de plus- en min-verbindingen gemeten kan worden. Gebruik hiervoor een draad met een doorsnede van 0,75 mm².

De Quattro zal tijdens het opladen van de accu het spanningsverlies over de DC-kabels compenseren tot maximaal 1 Volt (d.w.z. 1 V over de plusaansluiting en 1 V over de minaansluiting). Als het spanningsverlies groter dan 1 Volt dreigt te worden, wordt de laadstroom zodanig beperkt dat het spanningsverlies beperkt blijft tot 1 Volt.

4.4.3 Temperatuursensor (aansluitklem E, zie bijlage A)
Voor temperatuurgecompenseerd laden kan de temperatuursensor (meegeleverd met de Quattro) worden aangesloten. De sensor is geïsoleerd en moet op de minklem van de accu worden geplaatst.

4.4.4 Afstandsbediening
De Quattro kan op twee manieren op afstand worden bediend:
- Met een externe schakelaar (aansluitklem H, zie bijlage A). Werkt alleen als de schakelaar op de Quattro op “on” is gezet.
- Met een Multi Control-paneel (verbonden met één van de twee RJ48-stekkerbussen B, zie bijlage A). Werkt alleen als de schakelaar op de Quattro op “on” is gezet.

Met het Multi Control-paneel, alleen de stroomlimiet voor AC-in-2 kan worden ingesteld (m.b.t. PowerControl en PowerAssist).

4.4.5. Programmeerbaar relais
De Quattro is voorzien van een multifunctioneel relais dat standaard is geprogrammeerd als alarmrelais. Het relais kan echter voor allerlei andere toepassingen worden geprogrammeerd, bijvoorbeeld als startrelais voor een aggregaat (hiervoor is VEConfigure-software vereist).

4.4.6 AC-hulpuitgang (AC-out-2)
Naast de gebruikelijke ononderbroken uitgang (AC-out-1), is er een tweede uitgang (AC-out-2) beschikbaar die aansluiting van de belasting verbreekt wanneer de accu in bedrijf is. Voorbeeld: een elektrische boiler of airco die enkel mag werken als het aggregaat draait of er walstroom beschikbaar is.

Als de accu werkt, wordt de AC-out-2 onmiddellijk uitgeschakeld. Als er AC-voeding beschikbaar is, wordt de AC-out-2 opnieuw gekoppeld met een vertraging van 2 minuten, zodat een aggregaat kan worden gestabiliseerd voordat er een zware belasting wordt aangesloten.

4.4.7 Quattro’s parallel schakelen (zie bijlage C)
De Quattro kan parallel worden geschakeld met meerdere identieke apparaten. Hiervoor wordt een verbinding tussen de apparaten gemaakt met behulp van standaard RJ45 UTP-kabels. Het systeem (één of meerdere Quattro-units plus een optioneel bedieningspaneel) moet daarna worden geconfigureerd (zie hoofdstuk 5).

Bij het parallel schakelen van Quattro-units moet aan de volgende voorwaarden worden voldaan:
- Maximaal zes parallel geschakelde units.
- Alleen identieke apparaten met hetzelfde vermogen mogen parallel worden geschakeld.
- De accucapaciteit dient verschillend te zijn.
- De DC-aansluitkabels naar de apparaten moeten allemaal even lang zijn en dezelfde doorsnede hebben.
- Als een plus- en minusverbinding wordt gebruikt, moet de doorsnede van de aansluiting tussen de accu’s en het DC-verbinding minstens gelijk zijn aan de som van de doorsneden van de aansluitingen tussen het verdeelpaneel en de Quattro-units.
- Plaats de Quattro-units dicht bij elkaar, maar zorg voor minimaal 10 cm ventilatieruimte onder, boven en aan de zijkant van de units.
- De UTP-kabels moeten direct van de ene unit op de andere worden aangesloten (en op het afstandspaneel). Er mag geen gebruik gemaakt worden van aansluit-overdoozen.
- Op slechts één unit in het systeem hoeft een accutemperatuursensor te worden aangesloten. Als de temperatuur van meerdere accu’s moet worden gemeten, kunt u ook de sensoren van andere Quattro-units in het systeem aansluiten (max. 1 sensor per Quattro). De temperatuurcompensatie tijdens het opladen van de accu reageert dan op de sensor die de hoogste temperatuur meet.
- De spanningssensor moet worden aangesloten op de master (zie paragraaf 5.5.1.4).
- Er kan maar één afstandsbediening (paneel of schakelaar) op het systeem worden aangesloten.

4.4.8 Driefaseconfiguratie (zie bijlage C)
De Quattro kan ook worden gebruikt in een 3-fase wye (Y) configuratie. Hiervoor wordt een verbinding tussen de apparaten gemaakt met behulp van standaard RJ45 UTP-kabels (dezelfde als voor parallelle schakeling). Het systeem (Quattro-units plus een optioneel controlepaneel) dient daarna te worden geconfigureerd (zie hoofdstuk 5).

Opmerking: de Quattro is niet geschikt voor 3-fase delta (Δ) configuratie.
5. CONFIGURATIE

- Instellingen mogen alleen worden gewijzigd door een gekwalificeerde electrotechnicus.
- Lees de aanwijzingen grondig door voordat u wijzigingen doorvoert.
- Tijdens het instellen van de lader moet de DC-zekering in de accuaansluitingen worden verwijderd.

5.1 Standaardinstellingen: klaar voor gebruik

De Quattro wordt geleverd met standaardfabrieksinstellingen. Deze zijn in het algemeen geschikt voor toepassing van 1 apparaat. De instellingen hoeven daarom niet te worden gewijzigd in geval van standalone-gebruik.

Waarschuwing: mogelijk is de standaard acculaadspanning niet geschikt voor uw accu’s! Raadpleeg de documentatie van de fabrikant of vraag advies bij uw acculeverancier!

<table>
<thead>
<tr>
<th>Quattro-standaardfabrieksinstellingen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequentie omvormer</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Ingangs frequentiesbereik</td>
<td>45 - 65 Hz</td>
</tr>
<tr>
<td>Ingangspanningsbereik</td>
<td>180 - 265 VAC</td>
</tr>
<tr>
<td>Omvormerspanning</td>
<td>230 VAC</td>
</tr>
<tr>
<td>Standalone / parallel / 3-fase</td>
<td>standalone</td>
</tr>
<tr>
<td>AES (Automatic Economy Switch)</td>
<td>uit</td>
</tr>
<tr>
<td>Aardrelais</td>
<td>aan</td>
</tr>
<tr>
<td>Lader aan/uit</td>
<td>aan</td>
</tr>
<tr>
<td>Laadkarakteristieken</td>
<td>viertraps adaptief met BatterySafe-modus</td>
</tr>
<tr>
<td>Laadstroom</td>
<td>75% van de maximale laadstroom</td>
</tr>
<tr>
<td>Accutype</td>
<td>Victron Gel Deep Discharge (ook geschikt voor Victron AGM Deep Discharge)</td>
</tr>
<tr>
<td>Automatisch egalisatie laden</td>
<td>uit</td>
</tr>
<tr>
<td>Absorptiespanning</td>
<td>14,4 / 28,8 / 57,6 V</td>
</tr>
<tr>
<td>Absorptietijd</td>
<td>tot 8 uur (afhankelijk van bulkladingstijd)</td>
</tr>
<tr>
<td>Druppelladingsspanning</td>
<td>13,8 / 27,6 / 55,2 V</td>
</tr>
<tr>
<td>Opslagsspanning</td>
<td>13,2 V (niet instelbaar)</td>
</tr>
<tr>
<td>Herhaalde absorptietijd</td>
<td>1 uur</td>
</tr>
<tr>
<td>Absorptieherhalingsinterval</td>
<td>7 dagen</td>
</tr>
<tr>
<td>Bulkbeveiliging</td>
<td>aan</td>
</tr>
<tr>
<td>Aggregaat (AC-in-1) / walstroom (AC-in-2)</td>
<td>50 A/16 A (= regelbare stroomlimiet voor PowerControl en PowerAssist-functies)</td>
</tr>
<tr>
<td>UPS-functie</td>
<td>aan</td>
</tr>
<tr>
<td>Dynamische stroombegrenzer</td>
<td>uit</td>
</tr>
<tr>
<td>WeakAC</td>
<td>uit</td>
</tr>
<tr>
<td>BoostFactor</td>
<td>2</td>
</tr>
<tr>
<td>Programmeerbaar relais</td>
<td>alarmfunctie</td>
</tr>
<tr>
<td>PowerAssist</td>
<td>aan</td>
</tr>
</tbody>
</table>

5.2 Uitleg bij de instellingen

Hieronder volgt een korte uitleg bij de instellingen die niet vanzelfsprekend zijn. Meer informatie vindt u in de help-bestanden van de softwareconfiguratiedocumentatie van de softwareconfiguraties (zie paragraaf 5.3).

<table>
<thead>
<tr>
<th>Frequentie omvormer</th>
<th>Uitgangsfrequentie als er geen AC op de ingang aanwezig is.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instelbaar: 50 Hz; 60 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingangs frequentiesbereik</th>
<th>Dat door de Quattro wordt geaccepteerd. De Quattro synchroniseert binnen dit bereik met de spanning die beschikbaar is op AC-in-1 (voorkeursingang) of AC-in-2. Als de synchronisatie is voltooid is de uitgangsfrequentie gelijk aan de ingangs frequente.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instelbaar: 45 – 65 Hz; 45 – 55 Hz; 55 – 65 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingangspanningsbereik</th>
<th>Dat door de Quattro wordt geaccepteerd. De Quattro synchroniseert binnen dit bereik met de spanning die beschikbaar is op AC-in-1 (voorkeursingang) of AC-in-2. Als het terugleverrelais is gestoten is de uitgangsspanning gelijk aan de ingangsspanning.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instelbaar: Ondergrens: 180 - 230 V</td>
</tr>
<tr>
<td></td>
<td>Bovengrens: 230 - 270 V</td>
</tr>
</tbody>
</table>

Opmerking: De fabrieksinstelling voor de ondergrens van 180 Vis bedoeld voor aansluiting op een instabiele netspanning of een generator met instabiel AC-uitgangsspanning. Deze instelling kan leiden tot uitschakeling van het systeem als dit is aangestoten op een ‘borstelloze, zelfbekrachtigde, extern spanningsgeregelde, synchonne wisselstroomgenerator’ (synchonne generator met automatische spanningsregelaar). De meeste generatoren met een vermogen van 10 kVA of meer zijn synchonne generatoren met automatische spanningsregelaar. De uitschakeling vindt plaats als de generator wordt gestopt en langzamer gaat draaien, terwijl de generator met automatische spanningsregelaar tegelijkertijd ‘probeert’ om de uitgangsspanning van de generator op 230 V te houden.
De oplossing is om ondergrens te verhogen naar 210 VAC (generatoren met automatische spanningsregelaar hebben over het algemeen een zeer stabiele uittgangspanning) of om de Multi(s) los te koppelen van de generator als een generatorstopsignaal wordt afgegeven (met behulp van een in serie met de generator geïnstalleerde AC-schakelaar).

Omvoermerspanning
Uitgangspanning van de Quattro bij accubedrijf.
Instelbaar: 210 – 245 V

Standalone / parallel bedrijf / 2-3-fase-instelling
Met meerdere apparaten is het mogelijk om:
- het totale omvormvermogen te vergroten (meerdere apparaten parallel geschakeld)
- een 3-fasesysteem te maken door te stapelen (enkel voor Quattro-units met een uittgangspanning van 120 V)
- een 3-fasesysteem te maken.

Hiervoor moeten de apparaten onderling worden verbonden met RJ45 UTP-kabels. De standaard apparaatinstellingen zijn echter zo gekozen dat elk apparaat als standalone werkt. Daarom moeten de apparaten opnieuw worden geconfigureerd.

AES (Automatic Economy Switch)
Als deze instelling op 'on' wordt gezet, wordt het stroomverbruik bij nullast en lage belasting verlaagd met ca. 20% door de sinusspanning iets te 'versmallen'. Niet instelbaar met DIP-schakelaars. Enkel van toepassing in standalone-configuratie.

Search Mode (zoekmodus)
In plaats van de AES-modus kan ook de search mode (enkel met behulp van VEConfigure) worden gekozen.
Als de 'search mode' is ingeschakeld, wordt het stroomverbruik bij nullast verlaagd met ca. 70%. De 'search mode' houdt in dat de Quattro wordt uitgeschakeld als er geen belasting is of als deze heel laag is. Iedere 2 seconden zal de Quattro even inschakelen. Als de uitgangsstroom een ingesteld niveau overschrijdt, blijft de omzetter werken. Zo niet, dan gaat de omvormer weer uit.

De belastingsniveaus "uitschakeling" en "ingeschakeld blijven" van de zoekmodus kunnen met VEConfigure worden ingesteld. De fabrieksinstelling is:
- Uitschakelen: 40 watt (lineaire belasting)
- Inschakelen: 100 watt (lineaire belasting)

Niet instelbaar met DIP-schakelaars. Enkel van toepassing in standalone-configuratie.

Aardrelais (zie bijlage B)
Met dit relais (H), wordt de nulleider van de AC-uitgang geaard met de behuizing als het terugleverveiligheidsrelais in de AC-in1- en de AC-in2-ingangen open zijn. Dit om de correcte werking van aardlekschakelaars in de uitgangen veilig te stellen.
Als een niet geaarde uitgang gewenst is tijdens het omvormerbedrijf, dan moet deze functie worden uitgeschakeld. (Zie ook paragraaf 4.5)

Niet instelbaar met DIP-schakelaars.

Indien nodig, kan een extern aardrelais worden aangesloten (voor een éénfasesysteem met een aparte autotransformator).

Acculaadkarakteristiek
De standaardinstelling is 'viertraps adaptief met BatterySafe-modus'. Zie hoofdstuk 2 voor een beschrijving.

Accutype

Met VEConfigure kan de laadkarakteristiek worden aangepast, zodat elk type accu (nikkelcadmiumaccu's, lithiumionaccu's) kan worden opgeladen.

Automatische egalisatielading
Deze instelling is bedoeld voor buisjesplaattractie-accu's. Bij deze instelling wordt de maximale absorptiespanning verhoogd tot 2,83 V/cel (34 V voor een 24V-accu) nadat tijdens absorptieladen de stroom is gedaald tot minder dan 10% van de ingestelde maximumstroom.

Zie 'tubular plate traction battery charge curve' (laadkarakteristiek van buisjesplaattractieaccu's) in VEConfigure.

Absorptietijd
Dit hangt af van de bulklaadings tijd (adaptieve laadkarakteristiek), zodat de accu optimaal wordt opgeladen. Als de 'vaste' laadkarakteristiek wordt gekozen, staat de absorptietijd vast. Voor de meeste accu's is een maximale absorptietijd van 8 uur geschikt. Als voor snelladen een extra hoge absorptiespanning is gekozen (kan alleen bij natte open accu's!), wordt de voorkeur gegeven aan 4 uur. Met DIP-switches kan een tijd van acht of vier uur worden ingesteld. Bij de adaptieve laadkarakteristiek bepaalt dit de maximale absorptietijd.

Opslappingspanning, herhaalde absorptietijd, absorptieherhalingsinterval
Zie hoofdstuk 2. Niet instelbaar met DIP-schakelaars.

Bulkbeveiliging
Als deze instelling op 'on' staat, wordt de bulklaad tijd beperkt tot max. 10 uur. Een langere laad tijd zou kunnen duiden op een systeemfout (bijvoorbeeld een kortgesloten accucel). Niet instelbaar met DIP-schakelaars.
AC-ingangsstroomlimiet AC-in-1 (aggregaat) / AC-in-2 (walstroom/elektriciteitsnet)

Dit zijn de stroomgrensinstellingen, waarbij PowerControl en PowerAssist in werking treden.

PowerAssist-instellingsbereik:
- Van 5,3 A tot 50 A voor ingang AC-in-1
- Van 5,3 A tot 50 A voor ingang AC-in-2

Fabrieksinstellingen: de maximumwaarde (16 A en 50 A).

In geval van parallel geschakelde units moeten voor het bereik de minimum- en maximumwaarden worden vermenigvuldigd met het aantal parallel geschakelde units.

UPS-functie

Als deze instelling op ‘on’ staat en de wisselspanning op de ingang wegvalt, schakelt de Quattro praktisch zonder onderbreking over naar omvormerbedrijf. De Quattro kan dan worden gebruikt als Uninterruptible Power Supply (UPS of onderbrekingsvrije voeding) voor gevoelige apparatuur, zoals computers of communicatiesystemen.

De uitgangsspanning van sommige kleine aggregaten is te instabiel en te vervormd voor gebruik van deze instelling - de Quattro zou voortdurend overschakelen op naar omvormerbedrijf. Daarom kan er voor gekozen worden om deze instelling uit te schakelen. De Quattro reageert dan minder snel op spanningsafwijkingen bij AC-in-1 of AC-in-2. Hierdoor wordt de omschakeltijd naar omvormerbedrijf wat langer, maar de meeste apparatuur (computers, klokken of huishoudelijke apparatuur) ondervindt hier geen hinder van.

Advies: Schakel de UPS-functie uit als de Quattro niet synchroniseert of voortdurend terugschakelt naar omvormerbedrijf.

Dynamische stroombegrenzer

Bedoeld voor aggregaten, waarbij de wisselspanning wordt opgewekt met behulp van een statische omvormer (zogenaamde ‘omvormer’-aggregaten). Bij deze aggregaten wordt het toerental teruggeregeld als de belasting laag is: dat beperkt lawaai, brandstofverbruik en vervuiling. Nadeel is dat de uitgangsspanning sterf zal zakken of zelfs helemaal wegvalt bij een plotselinge verhoging van de belasting. Meer belasting kan pas geleverd worden nadat de motor op toeren is.

Als deze instelling op ‘on’ wordt gezet, zal de Quattro beginnen met het leveren van extra vermogen op een laag aggregaatuitgangsvermogen en langzaam meer leveren tot de ingestelde stroomlimiet is bereikt. Hierdoor krijgt de motor van het aggregaat de tijd om op te schakelen. Deze instelling wordt ook vaak toegepast bij ‘klassieke’ aggregaten die traag reageren op plotselinge belastingvariaties.

WeakAC

Sterke vervorming van de ingangsspanning kan tot gevolg hebben dat de lader niet of nauwelijks werkt. Als WeakAC (lage wisselspanning) wordt ingesteld, accepteert de lader ook een sterk vervormde spanning, ten koste van meer vervorming van de ingangen stroom.

Advies: WeakAC inschakelen als de lader niet of nauwelijks laadt (dit komt overigens zelden voor!). Zet tegelijk ook de ‘dynamische stroombegrenzer’ aan en reduceer desnoods de maximale laadstroom om overbelasting van het aggregaat te voorkomen.

Opmerking: als WeakAC geactiveerd is, wordt de maximale laadstroom met ongeveer 20% verminderd.

Niet instelbaar met DIP-schakelaars.

BoostFactor

Wijzig deze instelling alleen na overleg met Victron Energy of een door Victron Energy getrainde installateur!

Niet instelbaar met DIP-schakelaars.

Drie programmeerbare relais

De Quattro is voorzien van 3 programmeerbare relais. Het relais kan voor allerlei andere toepassingen worden geprogrammeerd, bijvoorbeeld als startrelais voor een aggregaat. De fabrieksinstelling van het relais in positie I (zie bijlage A, rechts boven) is ‘alarm’.

Niet instelbaar met DIP-schakelaars.

Frequentiewisseling

Als zonneomvormers zijn aangesloten op de uitgang van een Multi of Quattro wordt het te veel aan zonne-energie gebruikt om de accu’s weer op te laden. Zodra de absorptiespanning is bereikt, schakelen de Multi of Quattro de zonneomvormer uit door de uitgangsfrequentie met 1 Hz aan te passen (bijvoorbeeld van 50 Hz naar 51 Hz). Zodra de accuspanning iets is gedaald, keert de frequentie terug naar normaal en worden de zonneomvormers weer gestart.

Niet instelbaar met DIP-schakelaars.

Ingebouwde accumonitor (optioneel)

De ideale oplossing als Multi’s of Quattro’s onderdeel uitmaken van een hybride systeem (dieselaggregaat, omvormer/laders, opslagaccu en alternatieve energie). De ingebouwde accumonitor kan zo worden ingesteld dat deze het aggregaat start en stopt:
- Start van een vooringsgesteld % van het ontladingsniveau en/of
- Start (met een vooringsgestelde vertraging) bij een vooringsgestelde accuspanning en/of
- Start (met een vooringsgestelde vertraging) bij een vooringsgesteld belastingsniveau.
- Stop bij een vooringsgestelde accuspanning of
- Stop (met een vooringsgestelde vertraging) nadat de bulkspanning is voltooid en/of
- Stop (met een vooringsgestelde vertraging) bij een vooringsgesteld belastingsniveau.

Niet instelbaar met DIP-schakelaars.
AC-hulpuitgang (AC-out-2)

Naast de ononderbroken uitgang (AC-out-1), is er een tweede uitgang (AC-out-2) beschikbaar die aansluiting van de belasting ontkoppelt als de accu in bedrijf is. Voorbeeld: een elektrische boiler of airco die enkel mag werken als het aggregaat draait of er walstroom beschikbaar is.

Als de accu werkt, wordt de AC-out-2 onmiddellijk uitgeschakeld. Als er AC-voeding beschikbaar is, wordt de AC-out-2 opnieuw gekoppeld met een vertraging van 2 minuten, zodat een aggregaat kan worden gestabiliseerd voordat er een zware belasting wordt aangesloten.

5.3 Configuratie via de pc

Alle instellingen kunnen worden gewijzigd via een pc of met een VE.Net-paneel (behalve bij de multifunctionele relais en de VirtualSwitch bij gebruik van VE.Net).

De meest algemene instellingen kunnen worden gewijzigd via de DIP-schakelaars (zie paragraaf 5.5).

OPMERKING:
Deze handleiding is bedoeld voor producten met firmware xxxx400 of hoger (waarbij x staat voor een willekeurig getal) en het firmwarenummer is te vinden op de microprocessor, na het verwijderen van het voorpaneel.

Oudere eenheden, waarvan het 7-cijferige nummer begint met 26 of 27, kunnen worden geüpdate. Het nummer begint met 19 of 20 heeft u een oude microprocessor en is het niet mogelijk om deze te updaten naar 400 of hoger.

Voor het wijzigen van instellingen via de pc heeft u het volgende nodig:
- Een MK3-USB (VE.Bus naar USB) interface en een RJ45 UTP-kabel.

Als alternatief kan de interface MK2.2b (VE.Bus naar RS232) en een RJ45 UTP-kabel worden gebruikt.

5.3.1 VE.Bus Quick Configure Setup

VE.Bus Quick Configure Setup is een softwareprogramma, waarmee systemen met maximaal 3 Multi-units (parallel- of driefasebedrijf) op eenvoudige wijze kunnen worden geconfigureerd.

5.3.2 VE.Bus System Configurator

5.4 Configuratie met een VE.Net-paneel

Met VE.Net zijn alle parameters toegankelijk, met uitzondering van de multifunctionele relais en de VirtualSwitch.

5.5 Configuratie met DIP-schakelaars

Inleiding

Een aantal instellingen kan worden gewijzigd met DIP-schakelaars (zie bijlage A, positie M).

Opmerking: Let er bij het wijzigen van de instellingen met DIP-schakelaars in een parallel of éénfase-/3-fasesysteem op dat niet alle instellingen bij alle Quattro-units van toepassing zijn. Dit, omdat sommige instellingen worden voorgeschreven door de Master of Leader.

Sommige instellingen zijn alleen relevant in de Master/Leader (d.w.z. deze zijn niet relevant in een slave of in een volger).

Andere instellingen zijn niet relevant voor slaves, maar wel relevant voor volgers.

Opmerking m.b.t. de gebruikte terminologie:

Een systeem, waarin meer dan één Quattro wordt gebruikt om een enkele AC-fase te creëren, wordt een parallel systeem genoemd. In dit geval zal één van de Quattro's de hele fase regelen, deze wordt de master genoemd. De anderen, slaves genoemd, luisteren naar de master om hun actie te bepalen.

Het is ook mogelijk om meer AC-fases (éénfase of 3-fase) met 2 of 3 Quattro-units te creëren. In dat geval wordt de Quattro in fase L1 de Leader genoemd. De Quattro in fase L2 (en L3 indien beschikbaar) genereren dezelfde AC-frequentie, maar volgen L1 met een vaste fasewissel. Deze Quattro's worden volgers genoemd.

Als meer Quattro's per fase worden gebruikt in een éénfase of 3-fasesysteem (bijvoorbeeld 6 Quattro's worden gebruikt om een 3-fasesysteem te bouwen met 2 Quatto's per fase), is de Leader van het systeem ook de Master van fase L1. De volgers in fase L2 en L3 nemen ook de rol van Master op zich in fase L2 en L3. Alle anderen zijn dan slaves.

Het instellen van een parallel of éénfase-/3-fasesystemen dient door software te gebeuren, zie paragraaf 5.3.

TIP: Als u zich niet wilt bezighouden met of een Quattro nu master, slave of volger is, is de eenvoudigste en meest directe manier om alle instellingen op alle Quattro's hetzelfde te doen.
Algemene procedure:

Schakel de Quattro in, bij voorkeur onbelast en zonder wisselspanning op de ingangen. De Quattro werkt dan in omvormerbedrijf.

Stap 1: Stel de DIP-schakelaars in voor:

- de vereiste stroomlimiet van de AC-ingang. (niet van toepassing voor slaves)
- beperking van de laadstroom. (alleen van toepassing voor Master/Leader)

Houd de knop 'Up' 2 seconden lang ingedrukt (bovenste knop rechts van de DIP-schakelaars, zie bijlage A, positie K) om de instellingen op te slaan nadat de vereiste waarden zijn ingesteld. U kunt nu de DIP-schakelaars weer gebruiken om de resterende instellingen toe te passen (stap 2).

Stap 2: overige instellingen, stel de DIP-schakelaars in voor:

- Laadspanningen (alleen van toepassing voor Master/Leader)
- Absorptietijd (alleen van toepassing voor Master/Leader)
- Adaptief opladen (alleen van toepassing voor Master/Leader)
- Dynamische stroombegrenzer (niet van toepassing voor slaves)
- UPS-functie (niet van toepassing voor slaves)
- omvormerspanning (niet van toepassing voor slaves)
- omvormerfrequentie (alleen van toepassing voor Master/Leader)

Houd de knop 'Down' 2 seconden lang ingedrukt (onderste knop rechts van de DIP-schakelaars) om de instellingen op te slaan nadat de DIP-schakelaars in de stand positie zijn gezet. U kunt de DIP-schakelaars nu in de gekozen stand laten staan, zodat u de 'overige instellingen' altijd terug kunt vinden.

Opmerking:
- De DIP-schakelaarfuncties worden beschreven van boven naar beneden. Omdat de bovenste DIP-schakelaar het hoogste nummer (8) heeft, starten de beschrijvingen met schakelaar nummer 8.

5.5.1 Stap 1
5.5.1.1 Stroombegrenzing AC-ingangen (standaard: AC-in-1: 50 A, AC-in-2: 16 A)

Als de door de Quattro opgenomen AC-ingangsstroom (door de aangesloten belastingen en de acculader) stijgt en de AC-ingangsstroomlimiet bijna gaat overschrijden, zal de Quattro eerst de eigen laadstroom verlagen (PowerControl) en vervolgens, indien nodig, extra vermogen leveren via de accu (PowerAssist). Op deze manier zal de Quattro proberen om te voorkomen dat de ingangsstroom de ingestelde limiet overschrijdt.

Procedure

AC-in-1 kan worden ingesteld met de DIP-schakelaars ds8, ds7 en ds6 (fabrieksinstelling: 50 A).

Procedure: stel de DIP-schakelaars in op de vereiste waarde:

<table>
<thead>
<tr>
<th>ds8</th>
<th>ds7</th>
<th>ds6</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

Opmerking: Het door de fabrikant opgegeven continu vermogen van kleine aggregaten is soms aan de zeer optimistische kant. De stroomgrens moet dan veel lager worden ingesteld dan uit de gegevens van de fabrikant blijkt.
AC-in-2 kan in twee stappen worden ingesteld met DIP-schakelaar ds5 (fabrieksinstelling: 16 A).
Procedure: stel ds5 in op de vereiste waarde:

<table>
<thead>
<tr>
<th></th>
<th>ds5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>off = 16 A</td>
</tr>
<tr>
<td></td>
<td>on = 30 A</td>
</tr>
</tbody>
</table>

Belangrijk: Als een paneel wordt aangesloten, wordt de stroomlimiet van AC-in-2 bepaald door het paneel en niet door de in de Quattro opgeslagen waarde.

5.5.1.2 Begrenzing laadstroom (standaardinstelling 75%)
Voor een lange levensduur dient bij loodzuuraccu's een laadstroom van 10% tot 20% van de capaciteit in Ah te worden toegepast.

Belangrijke opmerking: Als de laatste 3 cijfers van de Multi-firmware in het bereik van 100 liggen (dus het firmwarenummer xxxx1xx is (x staat voor een willekeurig nummer)), dan worden ds1 & ds2 gebruikt om een Multi in te stellen op standalone, parallel- of driefasebedrijf. Raadpleeg hiervoor de betreffende handleiding.

5.5.1.3 DIP-schakelaars ds2 en ds1 worden niet gebruikt tijdens stap 1.

Belangrijke opmerking: Als een paneel wordt aangesloten, wordt de stroomlimiet van AC-in-2 bepaald door het paneel en niet door de in de Quattro opgeslagen waarde.

5.5.1.4 Voorbeelden

<table>
<thead>
<tr>
<th>Voorbeeld van instellingen:</th>
<th>Voorbeeld van instellingen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-8 AC-in-1</td>
<td>DS-8 AC-in-1</td>
</tr>
<tr>
<td>DS-7 AC-in-1</td>
<td>DS-7 AC-in-1</td>
</tr>
<tr>
<td>DS-6 AC-in-1</td>
<td>DS-6 AC-in-1</td>
</tr>
<tr>
<td>DS-5 AC-in-2</td>
<td>DS-5 AC-in-2</td>
</tr>
<tr>
<td>DS-4 Laadstroom</td>
<td>DS-4 Laadstroom</td>
</tr>
<tr>
<td>DS-3 Laadstroom</td>
<td>DS-3 Laadstroom</td>
</tr>
<tr>
<td>DS-2 Standalone-modus</td>
<td>DS-2 Standalone-modus</td>
</tr>
<tr>
<td>DS-1 Standalone-modus</td>
<td>DS-1 Standalone-modus</td>
</tr>
</tbody>
</table>

Stap 1, standalone
Voorbeeld 1 (fabrieksinstelling):
- 8, 7, 6 AC-in-1: 50 A
- 5 AC-in-2: 30 A
- 4, 3 Laadstroom: 75%
- 2, 1 Standalone-modus

Stap 1, standalone
Voorbeeld 2:
- 8, 7, 6 AC-in-1: 50 A
- 5 AC-in-2: 16 A
- 4, 3 laden: 100%
- 2, 1 Standalone

Stap 1, standalone
Voorbeeld 3:
- 8, 7, 6 AC-in-1: 16 A
- 5 AC-in-2: 16 A
- 4, 3 laden: 100%
- 2, 1 Standalone

Stap 1, standalone
Voorbeeld 4:
- 8, 7, 6 AC-in-1: 30 A
- 5 AC-in-2: 30 A
- 4, 3 laden: 50%
- 2, 1 Standalone

Opmerking: als WeakAC is ingeschakeld, wordt de maximale laadstroom verlaagd van 100% naar ongeveer 80%.

Wij adviseren om de instellingen te noteren en deze notitie op een veilige plek te bewaren.

De DIP-schakelaars kunnen nu worden gebruikt om de resterende instellingen toe te passen (stap 2).

5.5.2 Stap 2: Overige instellingen
De resterende instellingen zijn niet van toepassing voor slaves.

Om de instellingen op te slaan nadat de vereiste waarden zijn ingesteld: houd de knop 'Up' 2 seconden lang ingedrukt (bovenste knop rechts van de DIP-schakelaars, zie bijlage A, positie K). De leds 'overbelasting' en 'accu bijna leeg' gaan knipperen om aan te geven dat de instellingen zijn geaccepteerd.

Wij adviseren om de instellingen te noteren en deze notitie op een veilige plek te bewaren.

De DIP-schakelaars kunnen nu worden gebruikt om de resterende instellingen toe te passen (stap 2).

Stap 1, standalone
Voorbeeld 1 (fabrieksinstelling):
- 8, 7, 6 AC-in-1: 50 A
- 5 AC-in-2: 30 A
- 4, 3 Laadstroom: 75%
- 2, 1 Standalone-modus

Stap 1, standalone
Voorbeeld 2:
- 8, 7, 6 AC-in-1: 50 A
- 5 AC-in-2: 16 A
- 4, 3 laden: 100%
- 2, 1 Standalone

Stap 1, standalone
Voorbeeld 3:
- 8, 7, 6 AC-in-1: 16 A
- 5 AC-in-2: 16 A
- 4, 3 laden: 100%
- 2, 1 Standalone

Stap 1, standalone
Voorbeeld 4:
- 8, 7, 6 AC-in-1: 30 A
- 5 AC-in-2: 30 A
- 4, 3 laden: 50%
- 2, 1 Standalone

Wij adviseren om de instellingen te noteren en deze notitie op een veilige plek te bewaren.

De DIP-schakelaars kunnen nu worden gebruikt om de resterende instellingen toe te passen (stap 2).

Stap 1, standalone
Voorbeeld 1 (fabrieksinstelling):
- 8, 7, 6 AC-in-1: 50 A
- 5 AC-in-2: 30 A
- 4, 3 Laadstroom: 75%
- 2, 1 Standalone-modus

Stap 1, standalone
Voorbeeld 2:
- 8, 7, 6 AC-in-1: 50 A
- 5 AC-in-2: 16 A
- 4, 3 laden: 100%
- 2, 1 Standalone

Stap 1, standalone
Voorbeeld 3:
- 8, 7, 6 AC-in-1: 16 A
- 5 AC-in-2: 16 A
- 4, 3 laden: 100%
- 2, 1 Standalone

Stap 1, standalone
Voorbeeld 4:
- 8, 7, 6 AC-in-1: 30 A
- 5 AC-in-2: 30 A
- 4, 3 laden: 50%
- 2, 1 Standalone

Wij adviseren om de instellingen te noteren en deze notitie op een veilige plek te bewaren.

De DIP-schakelaars kunnen nu worden gebruikt om de resterende instellingen toe te passen (stap 2).
### ds8-ds7 Absorptie-spanning	Druppelspanning	Opstalg-spanning	Geschikt voor
off off 14,1 | 26,2 | 56,4 | Gel Victron Long Life (OPzV)
30,2 | 55,2 | Gel Exide A600 (OPzV)
62,2 | 80,2 |
off on 14,4 | 28,6 | 57,6 | Gel Victron Deep Discharge
32,2 | 64,2 | Gel Exide A200
66,2 | 88,2 |
on off 14,7 | 29,4 | 58,2 | AGM Victron Deep Discharge
33,2 | 66,2 | Vaste buisjesplattaccu (OPzS)
67,2 | 89,2 |
on on 15,0 | 30,0 | 60,0 | Buisjesplattaccu’s (OPzS) in semi-druppelmodus
35,0 | 70,0 |

Opmerking:
- Als het "adaptieve laadalgoritme" op 'on' staat, stelt ds6 de maximale absorptietijd in op 8 uur of 4 uur.
- Als het "adaptieve laadalgoritme" op 'off' staat, wordt de absorptietijd door ds6 (vast) ingesteld op 8 uur of 4 uur.

Stap 2: Voorbeeldinstellingen

Voorbeeld 1 (fabrieksinstelling):
- 8, 7 GEL 14,4 V
- Absorptietijd: 8 uur
- Adaptief laden: aan
- Dynamische stroombegrenzing: uit
- UPS-functie: aan
- Spanning: 230 V
- Frequentie: 50 Hz

Voorbeeld 2:
- 8, 7 OPzV 14,1 V
- Absorptietijd: 8 uur
- Adaptief laden: aan
- Dynamische stroombegrenzing: uit
- UPS-functie: uit
- Spanning: 230 V
- Frequentie: 50 Hz

Voorbeeld 3:
- 8, 7 AGM 14,7 V
- Absorptietijd: 8 uur
- Adaptief laden: aan
- Dynamische stroombegrenzing: aan
- UPS-functie: uit
- Spanning: 240 V
- Frequentie: 50 Hz

Voorbeeld 4:
- 8, 7 Buisjesplaat 15 V
- Absorptietijd: 4 uur
- Adaptief laden: aan
- Dynamische stroombegrenzing: uit
- UPS-functie: aan
- Spanning: 240 V
- Frequentie: 60 Hz

Om de instellingen op te slaan nadat de vereiste waarden zijn ingesteld: houd de knop 'Down' 2 seconden lang ingedrukt (onderste knop rechts van de DIP-schakelaars). De leds 'temperatuur' en 'accu bijna leeg' gaan knipperen om aan te geven dat de instellingen zijn geaccepteerd.

De DIP-schakelaars kunnen in de gekozen stand worden gelaten, zodat de 'overige instellingen' altijd weer terug te vinden zijn.
6. ONDERHOUD
De Quattro vereist geen specifiek onderhoud. Het volstaat om alle verbindingen eenmaal per jaar te controleren. Voorkom vocht en olie/roet/dampen en houd het apparaat schoon.

7. STORINGSAANDUIDINGEN
Belangrijke opmerking:
Als de accu helemaal leeg is (accuspanning minder dan 10V / 20V of 40V), start de Quattro alleen met opladen als de wisselspanning is aangesloten op AC-in-1.
De Quattro start pas met opladen als er wisselspanning is aangesloten op AC-in-2 als de accuspanning 10V / 20V of 40V overschijdt.

7.1 Algemene störungsanzeigungen
Via de onderstaande procedures kunnen de meeste fouten snel worden geïdentificeerd. Als u een fout niet kunt oplossen, neem dan contact op met uw Victron Energy-leverancier.

<table>
<thead>
<tr>
<th>Probleem</th>
<th>Oorzaak</th>
<th>Oplossing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omvormerbedrijf niet gestart als ingeschakeld.</td>
<td>De accuspanning is veel te hoog of te laag. Geen spanning op DC-aansluiting.</td>
<td>Zorg dat de accuspanning binnen het juiste bereik ligt.</td>
</tr>
<tr>
<td>De led "accu bijna leeg" knippert.</td>
<td>De accuspanning is laag.</td>
<td>Laad de accu op of controleer de accu-aansluitingen.</td>
</tr>
<tr>
<td>De led "accu bijna leeg" brandt.</td>
<td>De omvormer schakelt uit, omdat de accuspanning te laag is.</td>
<td>Laad de accu op of controleer de accu-aansluitingen.</td>
</tr>
<tr>
<td>De led "overbelasting" knippert.</td>
<td>De omvormerbelasting is hoger dan de nominale belasting.</td>
<td>Verlaag de belasting.</td>
</tr>
<tr>
<td>De led "overbelasting" brandt.</td>
<td>De omvormer is uitgeschakeld door een veel te hoge belasting.</td>
<td>Plaats de omvormer in een koele en goed geventileerde omgeving of verlaag de belasting.</td>
</tr>
<tr>
<td>De led "temperatuur" knippert of brandt.</td>
<td>De omgevingstemperatuur is hoger dan de belasting is te hoog.</td>
<td>Plaats de omvormer in een koele en goed geventileerde omgeving of verlaag de belasting.</td>
</tr>
<tr>
<td>De leds "accu bijna leeg" en "overbelasting" knipperen afwisselend.</td>
<td>Lage accuspanning en veel te hoge belasting.</td>
<td>Laad de accu's, koppel de belasting los of verlaag deze of plaats accu's met een grotere capaciteit. Monteer kortere en/of dikkere accukabels.</td>
</tr>
<tr>
<td>De leds "accu bijna leeg" en "overbelasting" knipperen tegelijkertijd.</td>
<td>De rimpelspanning op de DC-aansluiting overschrijdt 1,5 Vrms.</td>
<td>Controleer de accukabels en accu-aansluitingen.</td>
</tr>
<tr>
<td>De leds "accu bijna leeg" en "overbelasting" branden.</td>
<td>De omvormer is uitgeschakeld door een veel te hoge rimpelspanning op de ingang.</td>
<td>Plaats accu's met een grotere capaciteit. Monteer kortere en/of dikkere accukabels en reset de omvormer (uitschakelen en weer inschakelen).</td>
</tr>
<tr>
<td>Een alarmled brandt en het tweede knippert.</td>
<td>De omvormer is uitgeschakeld doordat een alarm is geactiveerd door een brandende led. De knipperende led geeft aan dat de omvormer door het alarm zou worden uitgeschakeld.</td>
<td>Kijk in deze tabel voor de juiste maatregelen m.b.t. deze alarmtoestand.</td>
</tr>
<tr>
<td>De lader werkt niet.</td>
<td>De accuspanning is laag.</td>
<td>Vervang de accuzekering.</td>
</tr>
<tr>
<td>De lader werkt niet.</td>
<td>De vervorming van de AC-ingangsspanning is te groot (normaal gesproken aggregaatvoeding).</td>
<td>Schakel de instellingen WeakAC en dynamische strombegrenzer in.</td>
</tr>
<tr>
<td>De lader werkt niet.</td>
<td>De Quattro bevindt zich in de modus "buitkebeveiliging", dus de maximale bulklaadtijd van 10 uur is overschreden.</td>
<td>Controleer uw accu's.</td>
</tr>
<tr>
<td>De lader werkt niet.</td>
<td>De Quattro bevindt zich in de modus "buitkebeveiliging", dus de maximale bulklaadtijd van 10 uur is overschreden.</td>
<td>OPMERKING: U kunt de foutmodus resetten door de Quattro uit- en weer in te schakelen.</td>
</tr>
<tr>
<td>De accu wordt niet volledig opgeladen.</td>
<td>De laadstroom is veel te hoog en start zo een voortijdige absorptielading.</td>
<td>De staal laadstroom in op een niveau tussen 0,1 en 0,2 keer de accuspanning.</td>
</tr>
<tr>
<td>De accu wordt niet volledig opgeladen.</td>
<td>Slechte accuaansluiting.</td>
<td>Controleer de accuaansluitingen.</td>
</tr>
<tr>
<td>De accu wordt niet volledig opgeladen.</td>
<td>De absorptiespanning is ingesteld op een onjuist niveau (te laag).</td>
<td>Stel een juist niveau voor de absorptiespanning in.</td>
</tr>
<tr>
<td>De accu wordt niet volledig opgeladen.</td>
<td>De druppellaadsomspanning is ingesteld op een onjuist niveau (te laag).</td>
<td>Stel een juist niveau voor de druppellaadsomspanning in.</td>
</tr>
<tr>
<td>De accu wordt niet volledig opgeladen.</td>
<td>De beschikbare oplaadstroom is te kort om de accu volledig op te kunnen laden.</td>
<td>Kies een langere oplaadstroom of een hogere laadstroom.</td>
</tr>
</tbody>
</table>
De absorptietijd is te kort. Bij adaptief laden kan dit worden veroorzaakt door een extreem hoge laadstroom ten opzichte van de accucapaciteit, zodat de bulkladingsfase te kort is.

Verlaag de laadstroom of kies de 'vaste' laadkarakteristieken.

De accu wordt overladen.

De absorptiespanning is ingesteld op een onjuist niveau (te hoog).

Stel een juist niveau voor de absorptiespanning in.

De druppellaadspanning is ingesteld op een onjuist niveau (te hoog).

Stel een juist niveau voor de druppellaadspanning in.

Accu verkeert in slechte toestand.

Vervang de accu.

De accutemperatuur is te hoog (door slechte ventilatie, veel te hoge omgevingstemperatuur of veel te hoge laadstroom).

Verbeter de ventilatie, plaats de accu's in een koelere omgeving, verlaag de laadstroom en sluit de temperatuursensor aan.

De laadstroom daalt naar 0 zodra de absorptieladingsfase wordt gestart.

De accu is oververhit (>50°C)

Plaats de accu in een koelere omgeving
Verlaag de laadstroom
Controleer of één van de accucellen een interne kortsluiting heeft

De accuspanning is ingesteld op een onjuist niveau (te hoog).

Stel een juist niveau voor de accuspanning in.

De accutemperatuursensor is defect

Koppel de temperatuursensorensteek in de Quattro los.
Als het opladen weer goed werkt na ca. 1 minuut, dient de temperatuursensor te worden vervangen.

7.2 Speciale ledaanduidingen
(zie voor de normale ledaanduidingen paragraaf 3.4)

De leds bulk lading en absorptielading knipperen synchroon (tegelijkertijd).

Storing spanningssensor. De spanning gemeten bij de spanningsdetectie-aansluiting wijkt te veel af (meer dan 7 V) van de spanning bij de positieve en negatieve aansluiting van het apparaat. Het betreft waarschijnlijk een aansluitfout.
Het apparaat blijft in normaal bedrijf.
OPMERKING: Als de led "inverter on" knippert in tegenfase, dan betreft dit een VE.Bus-storingscode (zie onderstaand).

De leds absorptielading en druppellading knipperen synchroon (tegelijkertijd).

De gemeten accutemperatuur heeft een uiterst onwaarschijnlijke waarde. De sensor is waarschijnlijk defect of onjuist aangesloten. Het apparaat blijft in normaal bedrijf.
OPMERKING: Als de led "inverter on" knippert in tegenfase, dan betreft dit een VE.Bus-storingscode (zie onderstaand).

"Mains on" knippert en er is geen uitgangsspanning.
Het apparaat bevindt zich in de modus "charger only" en er is netvoeding beschikbaar. Het apparaat weigert de netvoeding of is nog bezig met synchroniseren.

7.3 VE.Bus-ledaanduidingen

Apparatuur, die is geïntegreerd in een VE.Bus-systeem (een parallel- of 3-faseconfiguratie) kan zogenaamde VE.Bus-ledaanduidingen bieden. Deze ledaanduidingen kunnen worden onderverdeeld in twee groepen: OK-codes en storingscodes.

7.3.1 VE.Bus-OK-codes
Als de interne toestand van een apparaat is orde is, maar het apparaat nog niet kan worden gestart, omdat één of meer andere apparaten in het systeem een storingsstatus aangeven, zullen de apparaten die in orde zijn een OK-code aangeven. Hierdoor is het opsporen van storingen in een VE.Bus-systeem mogelijk, omdat apparaten die geen aandacht nodig hebben ook als zodanig kunnen worden herkend.

Belangrijke aanwijzing: OK-codes worden alleen weergegeven als een apparaat zich niet in de omvormer- of oplaadmodus bevindt!

- Een knipperende led "bulk" geeft aan dat het apparaat kan omvormen.
- Een knipperende led "float" geeft aan dat het apparaat kan opladen.

OPMERKING: In principe moeten alle andere leds uit zijn. Als dat niet het geval is, is de code geen OK-code.

De volgende uitzonderingen zijn echter van toepassing:

- De bovenstaande speciale ledaanduidingen kunnen samen met de OK-codes optreden.
- De led "accu bijna leeg" kan samen met de OK-code functioneren die aangeeft dat het apparaat kan opladen.

7.3.2 VE.Bus-storingscodes
Een VE.Bus-systeem kan verschillende storingscodes weergeven. Deze codes worden weergegeven met de leds "inverter on", "bulk", "absorption" en "float".

Om een VE.Bus-storingscode juist te kunnen interpreteren, moet de volgende procedure worden gevolgd:

1. Het apparaat dient een storing te hebben (geen AC-uitgangsspanning).
2. Knippert de led "inverter on"? Indien niet, dan is er geen VE.Bus-storingscode.
3. Als één of meer van de leds "bulk", "absorption" of "float" knippert, dient dit knipperen in tegenfase van de led "inverter on" te gebeuren, d.w.z. de knipperende leds zijn uit als de led "inverter on" aan is en omgekeerd. Is dit niet het geval, dan is er geen VE.Bus-storingscode.
4. Controleer de led "bulk" en bepaal welke van de drie onderstaande tabellen gebruikt moet worden.
5. Kies de juiste kolom en rij (afhankelijk van de leds "absorption" en "float") en bepaal de storingscode.
Aan alle onderstaande voorwaarden moet worden voldaan!

4. Het apparaat heeft een storing! (Geen AC-uitgangsspanning)
5. Omvormer-led knippert (tegengesteld tot de leds Bulk, Absorption of Float)
6. Tenminste één van de leds Bulk, Absorption en Float brandt of knippert

<table>
<thead>
<tr>
<th>Led Bulk is uit</th>
<th>Led Absorption</th>
<th>Betekenis:</th>
<th>Oorzaak / oplossing:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Het apparaat is uitgeschakeld, omdat één van de andere fases in het systeem is uitgeschakeld.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Het systeem is niet juist geconfigureerd. Configureer het systeem opnieuw. Storing in de communicatiekabel. Controleer de kabels en schakel alle apparatuur uit en daarna weer in.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Overspanning bij AC-uitgang. Controleer de AC-kabels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Systeemtijdsynchronisatieprobleem opgetreden. Dit dient in juist geïnstalleerde apparatuur niet op te treden. Controleer de communicatiekabels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Apparaat kan geen gegevens overdragen. Controleer de communicatiekabels (er zou kortecontact kunnen zijn ontstaan).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>Eén van de apparaten heeft de rol van ‘master’ op zich genomen, omdat de originele master heeft gefaald. Controleer de falende unit. Controleer de communicatiekabels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>Overspanning is opgetreden. Controleer de AC-kabels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>Dit apparaat kan als ‘slave’ fungeren. Dit apparaat is een verouderd en ongeschikt model. Het dient te worden vervangen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>Overschakelsysteembeveiliging gestart. Dit dient in juist geïnstalleerde apparatuur niet op te treden. Schakel alle apparatuur uit en daarna weer in. Als het probleem opnieuw optreedt, controleer dan de installatie. Mogelijke oplossing: verhoog de ondergrens van de AC-ingangsspanning naar 210 VAC (fabrieksinstelling is 180 VAC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>Firmware-incompatibiliteit. Eén van de aangesloten apparaten heeft een te oude firmware om met dit apparaat samen te werken.</td>
</tr>
</tbody>
</table>
8. TECHNISCHE SPECIFICATIES

<table>
<thead>
<tr>
<th>Quattro</th>
<th>12/3000/120-50/50</th>
<th>230 V</th>
<th>24/3000/70-50/50</th>
<th>230 V</th>
<th>48/3000/35-50/50</th>
<th>230 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerControl / PowerAssist</td>
<td>Ja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geïntegreerde omschakelaar</td>
<td>Ja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-ingangen (2x)</td>
<td>Ingangsspanningsbereik: 187-265 VAC</td>
<td>Ingangs-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequentie: 45 – 65Hz</td>
<td>Vermogensfactor: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum doorschakelstroom (A)</td>
<td>AC-in-1: 50A</td>
<td>AC-in-2: 50A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimale PowerAssist-stroom (A)</td>
<td>AC-in-1: 5,3A</td>
<td>AC-in-2: 5,3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMVORMER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingangsspanningsbereik (V DC)</td>
<td>9,5 – 17</td>
<td>19 – 33</td>
<td>38 – 66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uitgang (1)</td>
<td>Uitgangsspanning: 230 VAC ± 2%</td>
<td>Frequentie: 50 Hz ± 0,1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cont. uitgangsvermogen bij 25°C (VA)</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continu uitgangsvermogen bij 25°C (W)</td>
<td>2400</td>
<td>2400</td>
<td>2400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continu uitgangsvermogen bij 40°C (W)</td>
<td>2200</td>
<td>2200</td>
<td>2200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continu uitgangsvermogen bij 65°C (W)</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piekvermogen (W)</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximaal rendement (%)</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nullast (W)</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nullastvermogen in AES-modus (W)</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nullastvermogen in zoekmodus (W)</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LADER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laadspanning 'absorptielading' (V DC)</td>
<td>14,4</td>
<td>28,8</td>
<td>57,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laadspanning 'druppellading' (V DC)</td>
<td>13,8</td>
<td>27,6</td>
<td>55,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opslagmodus (V DC)</td>
<td>13,2</td>
<td>26,4</td>
<td>52,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laadstroom service-accu (A)</td>
<td>120</td>
<td>70</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laadstroom startaccu (A)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accutemperatuursensor</td>
<td>Ja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALGEMEEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra AC-uitgang</td>
<td>Max. Belasting: 25 A</td>
<td>Schakelt uit als in omvormermodus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmeerbaar relais (5)</td>
<td>Ja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beveiligingen (2)</td>
<td>a - g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algemene kenmerken</td>
<td>Bedrijfstemp.: -40 tot +65°C (ventilatiekoeling)</td>
<td>Vochtigheid (niet condenserend): max. 95%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEHUIZING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algemene kenmerken</td>
<td>Materiaal en kleur: aluminium (blauw RAL 5012)</td>
<td>Beschermklasse: IP 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuaansluiting</td>
<td>Vier M8 bouten (2 positieve en 2 negatieve aansluitingen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 V AC-aansluiting</td>
<td>Schroefklemmen 13 mm² (6 AWG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afmetingen (hxbxd in mm)</td>
<td>362 x 258 x 218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veiligheid</td>
<td>NEN-EN 60335-1, NEN-EN 60335-2-29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissie / immunité</td>
<td>NEN-EN 55014-1, NEN-EN 55014-2, NEN-EN 61000-3-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Kan worden ingesteld op 60Hz en op 240V
2) Beveiligingen
 a. Kortsluiting utgang
 b. Overbelasting
 c. Accuspanning te hoog
 d. Accuspanning te laag
 e. Temperatuur te hoog
 f. 230 VAC op omvormeruitgang
 g. Ingangsspanning met een te hoge

3) Niet-lineaire belasting, topfactor 3:1
4) Bij 25°C omgevingstemperatuur
5) Programmeerbaar relais dat kan worden ingesteld op een algemeen alarm, DC-onderspanning of start/stop-functie aggregaat
Nominale AC-waarde: 230V/4A
REMARQUE :
Ce manuel est destiné aux produits ayant un micrologiciel xxxx400 ou de version supérieure (avec x nombre quelconque).
Le numéro du micrologiciel se trouve sur le microprocesseur — une fois le panneau avant retiré.
Il est possible de mettre à jour des unités plus anciennes, tant que ce même numéro à 7 chiffres commence soit par 26 soit par
27. Lorsque le numéro de la version commence par 19 ou 20, vous disposez d'un microprocesseur ancien, et il n'est plus
possible de le mettre à jour à la version 400 ou supérieure.

1. CONSIGNES DE SÉCURITÉ

Généralités

Veuillez d'abord lire la documentation fournie avec cet appareil avant de l'utiliser, afin de vous familiariser avec les symboles de
sécurité.
Cet appareil a été conçu et testé conformément aux normes internationales. L'appareil doit être utilisé uniquement pour
l'application désignée.

ATTENTION : RISQUE DE DÉCHARGE ÉLECTRIQUE

L'appareil est utilisé conjointement avec une source d'énergie permanente (batterie). Même si l'appareil est hors tension, les
bornes d'entrée et/ou de sortie peuvent présenter une tension électrique dangereuse. Toujours couper l'alimentation CA et
débrancher la batterie avant d'effectuer une maintenance.

L'appareil ne contient aucun élément interne pouvant être réparé. Ne pas démonter le panneau avant et ne pas mettre
l'appareil en marche tant que tous les panneaux ne sont pas mis en place. Toute maintenance doit être réalisée par du
personnel qualifié.

Ne jamais utiliser l’appareil dans un endroit présentant un risque d'explosion de gaz ou de poussière. Consultez les
caractéristiques fournies par le fabricant pour vous assurer que la batterie est adaptée à cet appareil. Les instructions de
sécurité du fabricant de la batterie doivent toujours être respectées.

ATTENTION : ne pas soulever d'objet lourd sans assistance.

Installation

Avant de commencer l’installation, lire les instructions.

Cet appareil est un produit de classe de sécurité I (livré avec une borne de terre pour des raisons de sécurité). Ses bornes de
sortie et/ou d'entrée CA doivent être équipées d'une mise à la terre permanente pour des raisons de sécurité. Un point
de mise à la terre supplémentaire est situé à l'extérieur du boîtier de l'appareil. Au cas où la protection de mise à la terre
serait endommagée, l'appareil doit être mis hors-service et neutralisé pour éviter une mise en marche fortuite ; contacter le
personnel de maintenance qualifié.

Vérifier que les câbles de connexion sont fournis avec des fusibles et des coupe-circuits. Ne jamais remplacer un dispositif de
protection par un autre d'un type différent. Se référer au manuel pour connaître la pièce correcte.

Avant de mettre l'appareil sous tension, vérifier que la source d'alimentation disponible est conforme aux paramètres de
configuration de l'appareil indiqués dans le manuel.

S'assurer que l'appareil est utilisé dans des conditions d'exploitation appropriées. Ne jamais l'utiliser dans un environnement
humide ou poussiéreux.
S'assurer qu'il existe toujours suffisamment d'espace libre autour de l'appareil pour la ventilation et que les orifices de
ventilation ne sont pas obstrués.
Install l'appareil dans un environnement protégé contre la chaleur. Par conséquent, il faut s'assurer qu’il n'existe aucun
produit chimique, pièce en plastique, rideau ou autre textile, à proximité de l'appareil.

Transport et stockage

Lors du stockage ou du transport de l'appareil, s'assurer que l'alimentation secteur et les bornes de la batterie sont
débranchées.

Nous déclinons toute responsabilité en ce qui concerne les dommages lors du transport, si l'appareil n'est pas transporté dans
son emballage d'origine.

Stocker l’appareil dans un endroit sec ; la température de stockage doit être comprise entre -20° C et +60° C.

Se référer au manuel du fabricant de la batterie pour tout ce qui concerne le transport, le stockage, la charge, la rechange et
l'élimination de la batterie.
2. DESCRIPTION

2.1 Généralités

Le Quattro réunit dans un boîtier compact un convertisseur sinusoïdal extrêmement puissant, un chargeur de batterie et un commutateur automatique.

Le Quattro bénéficie en plus des caractéristiques suivantes, souvent uniques :

Deux entrées CA, un système de permutation intégré entre la tension de quai et le générateur.
Le Quattro dispose de deux entrées CA (AC-in-1 et AC-in-2) afin de pouvoir raccorder deux sources de tension indépendantes.
Par exemple, deux générateurs, ou une alimentation principale et un générateur. Le Quattro choisira automatiquement l'entrée où il y aura de la tension.
S’il y a de la tension sur les deux entrées, le Quattro choisira l'entrée AC-in-1 à laquelle se trouve généralement connecté le générateur.

Deux Sorties CA
En plus de la sortie sans interruption habituelle (AC-out-1), une sortie axillaire (AC-out-2) est disponible et elle déconnecte sa charge en cas de fonctionnement de la batterie. Exemple : une chaudière électrique ne pouvant fonctionner que si le générateur est en marche ou si une puissance de quai est disponible.

Commutation automatique et permanente
Dans le cas d'une panne d'alimentation ou lorsque le générateur est arrêté, le Quattro bascule en mode convertisseur et reprend l'alimentation des appareils connectés. Ce transfert est si rapide que le fonctionnement des ordinateurs et des autres appareils électroniques n'est pas perturbé (Système d’Alimentation sans Coupure ou fonction UPS). Cela fait du Quattro un système d'alimentation de secours parfaitement adapté aux applications industrielles et de télécommunications. Le courant alternatif maximal pouvant être communiqué est de 30 A.

Configuration triphasée
Trois unités peuvent être configurées pour une sortie triphasée. Mais ce n'est pas tout : jusqu'à 6 séries de trois unités peuvent être raccordées en parallèle pour fournir une puissance de 45 kW / 54 kVA et plus de 1200A de capacité de charge.

PowerControl – Utilisation maximale de la puissance de quai limitée
Le Quattro peut fournir une puissance de charge énorme. Cela implique une demande importante sur l'énergie du quai ou du générateur. Cependant, un courant maximal peut être configuré pour les deux entrées CA. Le Quattro prend en compte les autres utilisateurs et utilise uniquement « l'excédent » pour la charge des batteries.
- À l'aide des interrupteurs DIP, du VE.Net ou d'un PC, il est possible de configurer un niveau maximal sur l'entrée AC-in-1 à laquelle est généralement connecté un générateur : ainsi ce dernier n'est jamais surchargé.
- Il est également possible de configurer un niveau maximal pour l'entrée AC-in-2. Cependant, pour les applications mobiles (bateaux, véhicules), un paramétrage variable du tableau de commande Multi Control sera généralement choisi. Ainsi, le courant maximal pourra s'adapter très simplement au courant de quai disponible.

PowerAssist – Utilisation étendue de votre générateur et de votre courant de quai : fonction « de co-alimentation » du Quattro
Le Quattro opère en parallèle avec un générateur ou une connexion de quai. Une panne de courant est automatiquement compensée : le Quattro extraira une puissance supplémentaire à partir des batteries afin d'apporter son aide. Un excédent de courant est utilisé pour recharger la batterie.

Cette fonction unique propose une solution définitive aux problèmes de courant de quai : les appareils électriques, les lave-vaisselle, les machines à laver, les cuisinières électriques, etc. : tous peuvent fonctionner avec un courant de quai de 16 A, ou moins. En outre, un générateur plus petit peut être installé.

Trois relais programmables
Le Quattro est équipé de 3 relais programmables. Néanmoins, les relais peuvent être programmés pour tout type d'applications, par exemple en tant que relais de démarrage pour un groupe électrogène.

Deux ports programmables d'entrée/sortie analogique/numérique
Le Quattro est équipé de deux ports d'entrée/sortie analogique/numérique. Ces ports peuvent être utilisés de différentes manières. Une application possible consiste à communiquer avec le BMS d'une batterie au lithium-Ion.

Déplacement de fréquence
Si les convertisseurs solaires sont connectés à la sortie d'un Multi ou d'un Quattro, l'excédent d'énergie solaire sera utilisé pour recharger les batteries. Une fois que la tension d'absorption est atteinte, le Multi ou le Quattro éteint le convertisseur solaire en déplaçant la fréquence de sortie de 1 Hz (par exemple de 50 Hz à 51 Hz). Une fois que la tension de la batterie a légèrement baissé, la fréquence revient à sa position normale et les convertisseurs solaires redémarrent.

Moniteur de batterie intégré (en option)
La solution idéale est que le Multi et le Quattro fassent partie d'un système hybride (générateur diesel, convertisseurs/chargeurs, accumulateur, et énergie alternative). Le moniteur de batterie intégré peut être configuré pour démarrer ou arrêter le générateur :
- démarrer à un niveau de décharge préconfiguré de %, et/ou
- démarrer (avec un retard préconfiguré) à une tension de batterie préconfigurée, et/ou
- démarrer (avec un retard préconfiguré) à un niveau de charge préconfiguré.
- arrêter à une tension de batterie préconfigurée, ou
- arrêter (avec un retard préconfiguré) après l'achèvement de la phase de charge Bulk, et/ou
- arrêter (avec un retard préconfiguré) à un niveau de charge préconfiguré.
Énergie solaire
Le Quattro est parfaitement adapté aux applications d’énergie solaire. Il peut être utilisé aussi bien pour concevoir des systèmes indépendants que des systèmes couplés au réseau.

Puissance de secours ou fonctionnement autonome en cas de défaillance du réseau
Les maisons ou les bâtiments équipés de panneaux solaires, ou d’une microcentrale énergétique pour l’électricité et le chauffage (une chaudière de chauffage central qui génère de l’électricité), ou les autres sources d’énergie durable, disposent ainsi d’une puissance électrique autonome qui peut être utilisée pour alimenter les équipements indispensables (pompes de chauffage central, réfrigérateurs, congélateurs, connexions Internet, etc.) lors d’une panne de courant. Cependant, à cet égard, le problème est que les panneaux solaires couplés au réseau et/ou les microcentrales énergétiques pour l’électricité et le chauffage s’arrêtent dès que l’alimentation réseau est défaillante. Avec un Quattro et des batteries, ce problème peut être résolu simplement : le Quattro peut remplacer l’alimentation réseau pendant une panne de courant. Lorsque les sources d’énergie durable produisent plus de puissance qu’il n’en faut, le Quattro utilise l’excédent pour charger les batteries ; et dans le cas d’une panne de courant, le Quattro fournira une puissance supplémentaire à partir des batteries.

Configuration par interrupteurs DIP, tableau de commande VE.Net ou ordinateur personnel
Le Quattro est livré prêt à l’emploi. Il existe trois possibilités pour modifier certains réglages à volonté :
- Les réglages les plus importants (y compris le fonctionnement en parallèle de jusqu’à trois appareils et le fonctionnement triphasé) peuvent être modifiés très simplement, à l’aide des interrupteurs DIP du Quattro.
- Tous les réglages, à l’exception du relais multifonction, peuvent être modifiés par l’intermédiaire du tableau de commande VE.Net.
- Tous les réglages peuvent être modifiés grâce à un PC et un logiciel gratuit, disponible en téléchargement sur notre site web www.victronenergy.com.

2.2 Chargeur de batterie

Algorithme de charge adaptative à 4 étapes : Bulk – absorption - Float – veille
Le système de gestion de batterie adaptative contrôlé par microprocesseur peut être réglé pour divers types de batteries. La fonction « adaptative » adapte automatiquement le processus de charge à l’utilisation de la batterie.

La quantité correcte de charge : durée d’absorption variable
Dans le cas d’un léger déchargement de batterie, l’absorption est maintenue réduite afin d’empêcher une surcharge et une formation de gaz excessive. Après un déchargement important, le temps d’absorption est automatiquement élevé afin de charger complètement la batterie.

Prévention des détériorations dues au gazage : le mode BatterySafe
Si, pour recharger rapidement une batterie, une puissance de charge élevée est associée à une tension d’absorption élevée, la détérioration due à un gazage excessif sera évitée en limitant automatiquement la progression de la tension, dès que la tension de gazage a été atteinte.

Moins d’entretien et de vieillissement quand la batterie n’est pas utilisée : le Mode veille
Le mode veille se déclenche lorsque la batterie n’a pas été sollicitée pendant 24 heures. En mode veille, la tension float est réduite à 2,2 V / cellule (13,2 V pour une batterie de 12 V) pour minimiser le gazage et la corrosion des plaques positives. Une fois par semaine, la tension est relevée au niveau d’absorption pour « égaliser » la batterie. Cette fonction empêche la stratification de l’électrolyte et la sulfatation, causes majeures de défaillances précoces d’une batterie.

Deux sorties CC pour le chargement de deux batteries
La borne principale CC peut fournir la totalité du courant de sortie. La seconde sortie, prévue pour charger une batterie de démarrage, est limitée à 4 A et sa tension de sortie est légèrement inférieure.

Augmentation de la durée de vie de la batterie : compensation de température
Fournie avec le produit, la sonde de température sert à réduire la tension de charge quand la température de la batterie augmente. Ceci est particulièrement important pour les batteries sans entretien qui pourraient se dessécher suite à une surcharge.

Sonde de tension de batterie : la tension de charge correcte
La perte de tension due à la résistance des câbles peut être compensée en utilisant un dispositif de lecture de tension directement sur le bus CC ou sur les bornes de la batterie.

Plus d’infos sur les batteries et leur charge
2.3 Autoconsommation – Systèmes de stockage d'énergie solaire

Pour davantage d'information, veuillez consulter notre livre blanc Self Consumption or Grid independence with the Victron Energy Storage Hub (Autoconsommation ou Indépendance par rapport au réseau avec le Centre de stockage de Victron Energy).

Le logiciel approprié peut être téléchargé depuis notre site Web.

Quand le Multi/Quattro est utilisé dans une configuration lui permettant de renvoyer de l'énergie au réseau, il faut activer la conformité du code du réseau en sélectionnant la configuration du code de réseau correspondant au pays avec l'outil VEConfigure.

De cette manière, le Multi/Quattro peut se conformer aux réglementations locales.

Une fois définie, un mot de passe sera nécessaire pour désactiver cette conformité au code de réseau ou pour modifier les paramètres concernant ce code.

Si le code de réseau local n’est pas compatible avec le Multi/Quattro, un dispositif de raccordement externe certifié devra être utilisé pour raccorder le Multi/Quattro au réseau.

Le Multi/Quattro peut également être utilisé en tant que convertisseur bidirectionnel fonctionnant en parallèle au réseau, intégré à un système conçu sur commande (PLC ou autre) qui prend en charge la boucle de régulation et les mesures du réseau. Voir http://www.victronenergy.com/live/system_integration:hub4_grid_parallel
3. UTILISATION

3.1 Interrupteur “On/ stand by / charger only”

Lorsque le commutateur est positionné sur « on », l'appareil est pleinement fonctionnel. Le convertisseur est mis en marche et la LED « inverter on » (convertisseur en marche) s'allume.

Si la borne « AC-in » est mise sous tension, l'appareil redirige cette tension CA sur la sortie « AC-out », si elle est à l'intérieur des limites paramétrées. Le convertisseur est arrêté, la LED « mains on » (sur réseau) s'allume et le chargeur se met en marche. En fonction du mode de charge, la LED « bulk », « absorption » ou « float », s'allume.

Si la tension de la borne « AC in » est rejetée, le convertisseur est mis en marche.

Lorsque le commutateur est positionné sur « charger only », seul le chargeur de batterie du Quattro est en service (si l'alimentation secteur est présente). Dans ce mode, la tension d'entrée est également dirigée sur la borne AC-out.

REM ARQUE : Lorsque seule la fonction chargeur est requise, assurez-vous que le commutateur est en position « charger only » (chargeur-unique). Cela empêchera la mise en marche du convertisseur en cas de coupure de l'alimentation secteur, ce qui aurait pour conséquence de vider les batteries.

3.2 Commande à distance

Il est possible de contrôler l'appareil à distance avec un interrupteur à trois positions ou avec un tableau de commande Multi Control.

Le tableau de commande Multi dispose d'un simple sélecteur rotatif, avec lequel il est possible de régler le courant maximal de l'entrée CA : voir les fonctions PowerControl et PowerAssist dans la section 2.

3.3 Égalisation et absorption forcée

3.3.1 Égalisation

Les batteries de traction nécessitent une charge normale supplémentaire. En mode égalisation, le Quattro charge pendant une heure avec une tension surélevée (1 V au-dessus de la tension d'absorption pour une batterie 12 V et 2 V pour une batterie 24 V). Le courant de charge est alors limité à 1/4 de la valeur définie. Les LED « Bulk » et « absorption » clignotent par intermittence.

Le mode d'égalisation fournit une tension de charge plus élevée que celle que peuvent supporter la plupart des appareils consommateurs de CC. Ces derniers doivent être débranchés avant de commencer un cycle d'égalisation.

3.3.2 Absorption forcée

Dans certaines circonstances, il peut être souhaitable de charger la batterie pendant une durée précise et à une tension d'absorption particulière. En mode absorption forcée, le Quattro charge à la tension d'absorption normale pendant la durée maximale d'absorption définie. La LED « absorption » s'allume.

3.3.3 Activation de l'égalisation ou de l'absorption forcée

Le Quattro peut être basculé dans ces états, à partir du tableau de commande à distance ou de l'interrupteur du panneau avant, à condition que tous les interrupteurs (panneau avant et tableau de commande à distance) soient réglés sur « on » et qu'aucun interrupteur ne soit sur « charger only ».

Pour placer le Quattro sur ce mode, il faut procéder comme suit.

Après le déroulement de cette procédure, si l'interrupteur n'est pas dans la position souhaitée, il peut être basculé encore une fois rapidement. Cela ne modifie pas l'état de charge.

REM ARQUE : Le basculement de « on » à « charger only » et vice-versa, tel qu'il est décrit ci-dessous, doit être exécuté rapidement. L'interrupteur doit être actionné de manière à ce que la position intermédiaire soit « ignorée ». Si le commutateur reste en position « off », même pour une courte durée, l'appareil peut s'arrêter. Dans ce cas, la procédure doit être recommencée depuis l'étape 1. Un certain degré de familiarisation est nécessaire pour l'utilisation de l'interrupteur frontal en particulier sur le Compact. Lors de l'utilisation du tableau de commande à distance, c'est moins important.

Procédure :

Vérifiez que tous les interrupteurs (frontal, à distance ou tableau de commande à distance si applicable) soient bien en position « on ».

L'activation de l'égalisation de l'absorption forcée n'a de sens que si le cycle de charge normale est terminé (le chargeur est en mode « float »). Pour l'activer :

a. Commuter rapidement de « On » à « charger only » (chargeur-unique), et laisser l'interrupteur sur cette position entre ½ et 2 secondes.

b. Commuter de nouveau rapidement de « charger only » (chargeur-unique) à « On », et laisser l'interrupteur sur cette position entre ½ et 2 secondes.

c. Commuter de nouveau rapidement de « On » à « charger only » (chargeur-unique), et laisser l'interrupteur sur cette position.

Sur le Quattro (ainsi que sur le tableau de commande MultiControl s'il est connecté), les trois LED « Bulk », « Absorption » et « Float » vont clignoter 5 fois. Par la suite, les LED « Bulk », « Absorption » et « Float » vont chacune s'allumer pendant 2 secondes. Si l'interrupteur est configuré sur « on » alors que la LED « Bulk » est allumée, le chargeur va commuter sur l'égalisation.

b. Si l'interrupteur est configuré sur « on » alors que la LED « Absorption » est allumée, le chargeur va commuter sur l'absorption forcée.

c. Si l'interrupteur est configuré sur « on » une fois la séquence des trois LED terminée, alors le chargeur va commuter sur « Float ».

d. Si l'interrupteur n'a pas été commuté, le Quattro restera sur « charger only » (Chargeur-unique), et il communiquera sur « Float ».
3.4 Indications des LED et leur signification

- LED éteinte
- LED clignotante
- LED allumée

Convertisseur

<table>
<thead>
<tr>
<th></th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

Le convertisseur est en marche et alimente la charge.

<table>
<thead>
<tr>
<th></th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

La puissance nominale du convertisseur est en surcharge. La LED « overload » clignote.

<table>
<thead>
<tr>
<th></th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

Le convertisseur s'est arrêté à cause d'une surcharge ou d'un court-circuit.

<table>
<thead>
<tr>
<th></th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

La batterie est presque vide.

<table>
<thead>
<tr>
<th></th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

Le convertisseur s'est arrêté à cause d'une tension de batterie faible.

<table>
<thead>
<tr>
<th></th>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>off</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>off</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>charger only</td>
<td>temperature</td>
</tr>
</tbody>
</table>

La température interne atteint un niveau critique.
Le convertisseur s'est arrêté parce que la température interne est trop élevée.

– Si les LED clignotent en alternance, la batterie est presque vide et la puissance nominale est dépassée.
 - Si les LED « overload » et « low battery » clignotent en même temps, il y a une tension d'ondulation trop élevée sur la connexion de la batterie.

Le convertisseur s'est arrêté parce que la tension d'ondulation est trop élevée la connexion de la batterie.
Chargeur de batterie

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-in-1 ou AC-in-2</td>
<td>La tension CA est commutée et le chargeur fonctionne en mode Bulk.</td>
</tr>
<tr>
<td>mains on</td>
<td>La tension CA sur AC-in-1 ou AC-in-2 est commutée et le chargeur est en</td>
</tr>
<tr>
<td></td>
<td>marche, mais la tension d'absorption configurée n'a pas encore été atteinte</td>
</tr>
<tr>
<td></td>
<td>(batterie en mode protection).</td>
</tr>
<tr>
<td>float</td>
<td>La tension CA sur AC-in-1 ou AC-in-2 est commutée et le chargeur fonctionne</td>
</tr>
<tr>
<td></td>
<td>en mode Float ou stockage.</td>
</tr>
<tr>
<td>absorption</td>
<td>La tension CA sur AC-in-1 ou AC-in-2 est commutée et le chargeur fonctionne</td>
</tr>
<tr>
<td></td>
<td>en mode égalisation.</td>
</tr>
</tbody>
</table>

Tableau de commandes :

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>La tension CA sur AC-in-1 ou AC-in-2 est commutée et le chargeur fonctionne</td>
</tr>
<tr>
<td></td>
<td>en mode Bulk.</td>
</tr>
<tr>
<td>bulk</td>
<td>La tension CA sur AC-in-1 ou AC-in-2 est commutée et le chargeur fonctionne</td>
</tr>
<tr>
<td></td>
<td>en mode absorption.</td>
</tr>
<tr>
<td>absorption</td>
<td>La tension CA sur AC-in-1 ou AC-in-2 est commutée et le chargeur fonctionne</td>
</tr>
<tr>
<td></td>
<td>en mode Float ou stockage.</td>
</tr>
<tr>
<td>float</td>
<td>La tension CA sur AC-in-1 ou AC-in-2 est commutée et le chargeur fonctionne</td>
</tr>
<tr>
<td></td>
<td>en mode égalisation.</td>
</tr>
</tbody>
</table>
Indications spéciales

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>charger only</td>
</tr>
<tr>
<td></td>
<td>temperature</td>
</tr>
</tbody>
</table>

La tension CA sur AC-in-1 ou AC-in-2 est commutée. Le courant d'entrée CA est égal au courant de charge. Le chargeur est réduit à 0 A.

Configuration pour alimenter un courant supplémentaire

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>charger only</td>
</tr>
<tr>
<td></td>
<td>temperature</td>
</tr>
</tbody>
</table>

La tension CA sur AC-in-1 ou AC-in-2 est commutée, mais la charge requiert plus de courant que le réseau ne peut en fournir. Le convertisseur est mis en marche pour alimenter le courant supplémentaire.
4. INSTALLATION

Cet appareil doit être installé par un électricien qualifié.

4.1 Emplacement

Le Quattro doit être installé dans un endroit sec et bien ventilé, aussi près que possible des batteries. L’appareil doit disposer d’un espace tout autour d’au moins 10 cm pour assurer un bon refroidissement.

Une température ambiante trop élevée aurait les conséquences suivantes :
- durée de vie réduite
- courant de charge plus faible
- puissance de crête réduite ou convertisseur complètement éteint.

Ne jamais placer l’appareil directement au-dessus des batteries.

Le Quattro peut être fixé au mur. Pour le montage, un crochet et deux trous sont disponibles à l’arrière du boîtier (voir l’annexe G). L’appareil peut être monté horizontalement ou verticalement. Pour un refroidissement optimal, le montage vertical est préférable.

La partie intérieure de l’appareil doit rester accessible après l’installation.

La distance entre le Quattro et la batterie doit être la plus courte possible pour réduire au minimum les pertes de tension à travers les câbles de la batterie.

Installant l’appareil dans un environnement protégé contre la chaleur. Par conséquent, s’assurer qu’il n’existe aucun produit chimique, pièce en plastique, rideau ou autre textile, à proximité de l’appareil.

Le Quattro n’a pas de fusible CC interne. Le fusible CC doit être installé à l’extérieur du Quattro.

4.2 Connexion des câbles de la batterie

Pour bénéficier de la puissance maximale du Quattro, il est nécessaire d’utiliser des batteries de capacité suffisante et des câbles de section suffisante.

Voir le tableau :

<table>
<thead>
<tr>
<th>Capacité de batterie recommandée (Ah)</th>
<th>12/3000/120</th>
<th>24/3000/70</th>
<th>48/3000/35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusible CC recommandé</td>
<td>400A</td>
<td>300A</td>
<td>125A</td>
</tr>
<tr>
<td>Section de câble recommandée (mm²) par borne de connexion + et -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 5 m*</td>
<td>2x 50 mm²</td>
<td>50 mm²</td>
<td>35 mm²</td>
</tr>
<tr>
<td>5 – 10 m*</td>
<td>2x 70 mm²</td>
<td>2x 50 mm²</td>
<td>2x 35 mm²</td>
</tr>
</tbody>
</table>

* « 2x » signifie deux câbles positifs et deux câbles négatifs.

Procédure

Pour connecter les câbles de la batterie, suivre la procédure suivante :

Utilisez une clé à pipe isolante afin d’éviter de court-circuiter la batterie.

Moment de force maximal : 9 Nm

Évitez de court-circuiter les câbles de batterie. Pour éviter de court-circuiter la batterie, une clé polygonale isolée doit être utilisée.

- Desserrez les quatre vis du panneau frontal inférieur sur le devant de l’appareil, et enlevez ce panneau.
- Raccordez les câbles de batterie : + (rouge) sur la borne du côté droit et - (noir) sur la borne du côté gauche (voir annexe A).
- Serrer les raccords après avoir monté les pièces de fixation.
4.3 Connexion des câbles CA

Ce Quattro est un produit de classe de sécurité I (livré avec une borne de terre pour des raisons de sécurité). Sa sortie CA et/ou ses bornes de sortie et/ou ses points de mise à la terre sur la partie externe du produit doivent être équipés d’une mise à la terre permanente pour des raisons de sécurité. À ce sujet, voir les instructions ci-après.

Le Quattro est fourni avec un relais de terre (voir annexe) qui raccorde automatiquement la sortie N au boîtier si aucune alimentation CA n’est disponible. Lorsqu’une source externe CA est fournie, le relais de terre s’ouvre avant que le relais de sécurité d’entrée ne se ferme (voir annexe B pour le relais H). Cela permet le fonctionnement correct d’un coupe-circuit de fuite à la terre connecté sur la sortie.

Sur une installation fixe, une mise à la terre sans coupure peut être sécurisée au moyen du câble de terre de la sortie CA. Autrement, le boîtier doit être mis à la masse.

Pour les installations mobiles, (par exemple avec une prise de courant de quai), le fait d’interrompre la connexion de quai va déconnecter simultanément la connexion de mise à la terre. Dans ce cas, le boîtier de l’appareil doit être raccordé au châssis (du véhicule), ou à la plaque de terre ou à la coque (du bateau).

En général, le branchement à la terre de la connexion de quai décrit ci-dessus n’est pas recommandé pour les bateaux en raison des risques de corrosion galvanique. Dans ce cas, la solution est l’utilisation d’un transformateur d’isolement.

Le convertisseur incorpore un transformateur d’isolation de fréquence du secteur. Il permet d’éviter d’avoir du courant CC sur un port CA. Un disjoncteur différentiel de type A peut donc être utilisé.

AC-in-1 (voir annexe A)
Si une tension CA est présente sur ces bornes, le Quattro utilisera cette connexion. Généralement, un générateur sera connecté à l’AC-in-1. L’entrée AC-in-1 doit être protégée par un fusible ou un disjoncteur magnétique de 50 A ou moins, et la section de câble doit être dimensionnée en conséquence. Si la valeur nominale de la puissance d’entrée CA est inférieure, le fusible ou le disjoncteur magnétique doit être calibré en conséquence.

AC-in-2 (voir annexe A)
Si une tension CA est présente sur ces bornes, le Quattro utilisera cette connexion, sauf si une tension est aussi présente sur AC-in-1. Le Quattro choisira alors automatiquement l’AC-in-1. Généralement, l’alimentation réseau ou la tension de quai sera connectée à AC-in-2. L’entrée AC-in-2 doit être protégée par un fusible ou un disjoncteur magnétique de 50A ou moins, et la section de câble doit être dimensionnée en conséquence. Si la valeur nominale de la puissance d’entrée CA est inférieure, le fusible ou le disjoncteur magnétique doit être calibré en conséquence.

Remarque : Le Quattro ne démarrera peut-être pas si le courant CA n’est présent que sur AC-in-2, et si la tension de batterie CC est de 10 % ou plus, en dessous de la capacité nominale (moins de 11 V dans le cas d’une batterie de 12 V).
Solution : connectez l’alimentation CA à AC-in-1, ou rechargez la batterie.

AC-out-1 (voir annexe A)
Le câble de sortie CA peut être raccordé directement au bornier « AC-out ». Grâce à la fonction PowerAssist, le Quattro peut ajouter à la sortie une puissance de 3 kVA (Ce qui fait : 3000 / 230 = 13 A) lorsque des périodes de puissance de pointe sont requises. Avec un courant d’entrée maximum de 50 A, cela signifie que la sortie peut fournir jusqu’à 50 + 13 = 63 A.
Un interrupteur différentiel et un fusible, ou un disjoncteur, configurés pour supporter une charge déterminée doivent être fournis en série avec la sortie, et la section de câble doit être adaptée en conséquence. La capacité maximale du fusible ou du disjoncteur est de 63A.

AC-out-2 (voir annexe A)
Une seconde sortie est disponible pour déconnecter sa charge en cas de fonctionnement de la batterie. Sur ces bornes, l’équipement connecté ne peut fonctionner que si la tension CA est disponible sur AC-in-1 ou AC-in-2, par exemple, une chaudière électrique ou un climatiseur. La charge en AC-out-2 est déconnectée immédiatement quand le Quattro passe en fonctionnement batterie. Une fois que la puissance CA est disponible sur AC-in-1 ou AC-in-2, la charge sur AC-out-2 se reconnectera après un laps de temps d’environ 2 minutes. Ceci permettra de stabiliser un générateur.

Procédure
Utiliser un câble à trois fils. Les bornes de connexion sont clairement codifiées :
PE : terre
N : conducteur neutre
L : conducteur de phase/de courant
4.4 Option de raccordement

4.4.1 Batterie de démarrage (borne de connexion E, voir annexe A)
Le Quattro est équipé d'une sortie pour la charge d'une batterie de démarrage. Le courant de sortie est limité à 4 A.

4.4.2 Sonde de tension (borne de connexion E, voir annexe A)
Pour compenser des pertes possibles dans les câbles au cours du processus de charge, une sonde à deux fils peut être raccordée directement à la batterie ou aux points de distribution positifs ou négatifs afin de pouvoir mesurer la tension. Utilisez des câbles avec une section de 0,75 mm². Pendant le chargement de la batterie, le Quattro compensera les chutes de tension des câbles CC à un maximum de 1 Volt (c'est-à-dire 1 V sur la connexion positive et 1 V sur la connexion négative). S'il y a un risque que les chutes de tension soient plus importantes que 1 V, le courant de charge sera limité de telle manière que la chute de tension restera limitée à 1 V.

4.4.3 Sonde de température (borne de connexion E, voir annexe A)
Pour compenser les changements de température lors de la charge, la sonde de température (fournie avec le Quattro) peut être connectée. La sonde est isolée et doit être fixée à la borne négative de la batterie.

4.4.4 Commande à distance
Le Quattro peut être commandé à distance de deux façons.
- Avec un commutateur externe (connexion borne H ; voir l'annexe A). Il ne fonctionne que si le commutateur du Quattro est en position « on ».
- Avec un tableau de commande Multi Control (raccordé à l'un des deux connecteurs RJ48 prises B, voir l’annexe A). Il ne fonctionne que si le commutateur du Quattro est en position « on ».
En utilisant le tableau de commande Multi, seule la limite de courant pour AC-in-2 peut être configurée (en ce qui concerne PowerControl et PowerAssist). La limite de courant pour AC-in-1 peut être paramétrée avec les interrupteurs DIP ou avec le logiciel.

Un seul contrôle à distance peut être connecté, c'est-à-dire, un interrupteur ou un tableau de commande Multi.

4.4.5. Relais programmable
Le Quattro est équipé d'un relais multifonction, qui est programmé par défaut comme relais d'alarme. Néanmoins, le relais peut être programmé pour tout type d'applications comme par exemple pour démarrer un générateur (Logiciel VEConfigure nécessaire).

4.4.6 Sortie CA auxiliaire (AC-out-2)
En plus de la sortie sans coupure habituelle (AC-out-1), une seconde sortie (AC-out-2) est disponible pour déconnecter sa charge en cas de fonctionnement de la batterie. Exemple : une chaudière électrique ou un climatiseur ne pouvant fonctionner que si le générateur est en marche ou si une puissance de quai est disponible.
En cas de fonctionnement de la batterie, la sortie AC-out-2 se coupe immédiatement. Une fois que l'alimentation CA est disponible, la sortie AC-out-2 se reconnecte dans un délai de 2 minutes, ce qui permet au générateur de se stabiliser avant de se connecter à une charge lourde.

4.4.7 Connexion de Quattro en parallèle (voir annexe C)
Le Quattro peut être connecté en parallèle avec plusieurs appareils identiques. Pour ce faire, une connexion est établie entre les appareils par l'intermédiaire de câbles standard RJ-45 UTP. Le système (un ou plusieurs Quattro avec un tableau de commande en option) devra être configuré en conséquence (voir la section 5). Dans le cas de Quattro connectés en parallèle, les conditions suivantes doivent être respectées :
- Six appareils maximum peuvent être connectés en parallèle.
- Seuls des appareils identiques, avec la même puissance, peuvent être connectés en parallèle.
- La capacité des batteries doit être suffisante.
- Les câbles de raccordement CC entre les appareils doivent être de longueur égale et de section identique.
- Si un point de distribution CC positif et négatif est utilisé, la section de la connexion entre les batteries et le point de distribution CC doit être au moins égale à la somme des sections requises pour les connexions entre le point de distribution et les Quattro.
- Placez les Quattro à proximité les uns des autres, mais conservez au moins 10 cm d'espace pour la ventilation, en dessous, au-dessus et sur les côtés.
- Les câbles UTP doivent être branchés directement entre les appareils (et le tableau de commande à distance). Les boîtiers de connexion/séparation ne sont pas autorisés.
- Une sonde de température de batterie doit être raccordée sur un appareil du système. Si la température de plusieurs batteries doit être mesurée, vous pouvez également raccorder les sondes des autres Quattro du système (avec au maximum une sonde par Quattro). La compensation de température pendant la charge de batterie intervient lorsque la sonde indique la plus haute température.
- La sonde de tension doit être raccordée au maître (voir la section 5.5.1.4).
Un seul moyen de commande à distance (tableau ou interrupteur) peut être raccordé au système.

4.4.8 Fonctionnement triphasé (voir annexe C)
Les Quattro peuvent être également utilisés dans une configuration triphasée en Y. Pour ce faire, une connexion est établie entre les appareils par l'intermédiaire de câbles standard RJ-45 UTP (comme pour le fonctionnement en parallèle). Le système (des Quattro avec un tableau de commande en option) devra être configuré en conséquence (voir la section 5). Conditions préalables : voir Section 4.4.7.
Remarque : le Quattro n'est pas adapté à une configuration triphasée en delta (Δ).
5. CONFIGURATION

- La modification des réglages doit être effectuée par un électricien qualifié.
- Lisez attentivement les instructions avant toute modification.
- Pendant la configuration du chargeur, le fusible CC dans les connexions de la batterie doit être enlevé.

5.1 Configuration standard: prêt à l'emploi

À la livraison, le Quattro est configuré avec les valeurs d'usine standard. En général, ces réglages sont adaptés au fonctionnement d'un seul appareil.

Pour autant, la configuration ne requiert aucun changement dans les cas d'un fonctionnement en mode indépendant.

Attention: il est possible que la tension de charge des batteries par défaut ne soit pas adaptée à vos batteries!
Consultez la documentation du fabricant ou le fournisseur de vos batteries!

Réglages d'usine standard

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fréquence du convertisseur</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Plage de Fréquence d'entrée</td>
<td>45 - 65 Hz</td>
</tr>
<tr>
<td>Plage de tension d'entrée</td>
<td>180 - 265 VCA</td>
</tr>
<tr>
<td>Tension du convertisseur</td>
<td>230 VCA</td>
</tr>
<tr>
<td>Indépendant / parallèle / triphasé</td>
<td>Indépendant</td>
</tr>
<tr>
<td>AES (Automatic Economy Switch)</td>
<td>off</td>
</tr>
<tr>
<td>Relais de terre</td>
<td>on</td>
</tr>
<tr>
<td>Chargeur on/ off</td>
<td>on</td>
</tr>
<tr>
<td>Caractéristiques de charge</td>
<td>adaptative en 4 étapes avec le mode BatterySafe</td>
</tr>
<tr>
<td>Courant de charge</td>
<td>75 % du courant de charge maximal</td>
</tr>
<tr>
<td>Type de batterie</td>
<td>Victron à électrolyte gélifié et à décharge poussée (adapté également au type Victron AGM à décharge poussée)</td>
</tr>
<tr>
<td>Charge d'égalisation automatique</td>
<td>off</td>
</tr>
<tr>
<td>Tension d'absorption</td>
<td>14,4 / 28,8 / 57,6 V</td>
</tr>
<tr>
<td>Durée d'absorption</td>
<td>jusqu'à 8 heures (en fonction de la durée Bulk)</td>
</tr>
<tr>
<td>Tension Float</td>
<td>13,8 / 27,6 / 55,2 V</td>
</tr>
<tr>
<td>Tension de stockage</td>
<td>13,2 V (non réglable)</td>
</tr>
<tr>
<td>Durée d'absorption répétée</td>
<td>1 heure</td>
</tr>
<tr>
<td>Intervalle d'absorption répétée</td>
<td>7 jours</td>
</tr>
<tr>
<td>Protection Bulk</td>
<td>on</td>
</tr>
<tr>
<td>Générateur (AC-in-1) / courant de quai (AC-in-2)</td>
<td>50 A/16A (= limite de courant réglable pour les fonctions de PowerControl et PowerAssist)</td>
</tr>
<tr>
<td>Fonction UPS</td>
<td>on</td>
</tr>
<tr>
<td>Limiteur de courant dynamique</td>
<td>off</td>
</tr>
<tr>
<td>WeakAC</td>
<td>off</td>
</tr>
<tr>
<td>BoostFactor</td>
<td>2</td>
</tr>
<tr>
<td>Relais programmable</td>
<td>Fonction d'alarme</td>
</tr>
<tr>
<td>PowerAssist</td>
<td>on</td>
</tr>
</tbody>
</table>

5.2 Explication des réglages

Les réglages non explicites sont brièvement décrits ci-dessous. Pour de plus amples informations, veuillez consulter les fichiers d'aide du logiciel de configuration (voir la section 5.3).

Fréquence du convertisseur

La fréquence de sortie si aucune tension CA n'est présente sur l'entrée.
Réglage : 50 Hz ; 60 Hz

Plage de fréquence d'entrée

Plage de la fréquence d'entrée acceptée par le Quattro. Le Quattro se synchronise sur cette plage avec la tension présente sur AC-in-1 (entrée priorité) ou AC-in-2. Une fois synchronisé, la fréquence de sortie sera égale à la fréquence d'entrée.
Réglage : 45 – 65 Hz; 45 – 55 Hz; 55 – 65 Hz

Plage de tension d'alimentation

Plage de la tension acceptée par le Quattro. Le Quattro se synchronise sur cette plage avec la tension présente sur AC-in-1 (entrée priorité) ou AC-in-2. Dès que le relais de renvoi est fermé, la tension de sortie sera égale à la tension d'entrée.
Réglage :
Limite inférieure : 180 - 230V
Limite supérieure : 230 - 270V

Note : la configuration de la limite inférieure standard de 180 V est prévue pour une connexion à une alimentation principale faible, ou à un générateur avec une sortie CA instable. La configuration pourrait impliquer l'arrêt du système connecté à un générateur CA synchrone, avec régulation de tension extérieure, à oscillations libres, sans balai (générateur AVR synchrone). La plupart des générateurs configurés à 10 kVA ou plus sont des générateurs AVR synchrone. L'arrêt commence quand le générateur est stoppé et baisse de régime pendant que l'AVR essaie simultanément de maintenir la tension de sortie du générateur à 230 V.
La solution consiste à augmenter la limite inférieure à 210 VCA (la sortie des générateurs AVR est généralement très stable), ou à déconnecter le(s) Multi(s) depuis le générateur quand le signal d'arrêt est donné (à l'aide d'un contacteur installé en série sur le générateur).
Tension du convertisseur
La tension de sortie du Quattro en mode batterie.
Réglage : 210 – 245V

Configuration pour un fonctionnement indépendant / en parallèle / triphasé
En utilisant plusieurs appareils, il est possible de :
- augmenter la puissance totale du convertisseur (plusieurs appareils en parallèle).
- créer un système à phase séparée (uniquement pour les Quattro avec une tension de sortie de 120 V).
- créer un système triphasé.

Pour ce faire, les appareils doivent être connectés entre eux avec des câbles RJ-45 UTP. Cependant, la configuration standard des appareils est telle que chacun fonctionne en mode indépendant. Par conséquent, la reconfiguration des appareils est requise.

AES (Automatic Economy Switch)
Si ce réglage est défini sur « on » et si aucune charge n'est disponible ou avec des charges faibles, la consommation électrique sera réduite d’environ 20 % en « rétrécissant » légèrement la tension sinusoïdale. Ce paramètre n'est pas réglable par des interrupteurs DIP. Applicable uniquement à une configuration indépendante.

Mode Recherche
Au lieu du mode AES, le mode Recherche peut aussi être choisi (uniquement à l’aide de VEConfigure). Si le mode Recherche est en position « on », la consommation de puissance se réduit d’environ 70 % si aucune charge n'est disponible. Grâce à ce mode quand le Quattro fonctionne en mode convertisseur, il est arrêté en cas d'absence de charge ou de charge très faible, puis mis en marche toutes les deux secondes pour une courte période. Si le courant de charge dépasse le niveau défini, le convertisseur continue à fonctionner. Dans le cas contraire, le convertisseur s'arrête à nouveau. Les niveaux de charge du mode Recherche « shut down » (déconnecté) et « remain on » (rester allumé) peuvent être configurés avec VEConfigure.

La configuration standard est :
- Déconnecté : 40 Watt (charge linéaire)
- Allumé : 100 Watt (charge linéaire)

Ce paramètre n’est pas réglable par des interrupteurs DIP. Applicable uniquement à une configuration indépendante.

Relais de terre (voir l'annexe B)
Avec ce relais (H), le conducteur neutre de la sortie CA est mis à la terre au boîtier, quand les relais de réalimentation/sécurité dans les entrées AC-in-1 et l'AC-in-2 sont ouverts. Cela permet le fonctionnement correct des coupe-circuit de fuite à la terre sur la sortie. Si une sortie non reliée à la terre est requise pendant le fonctionnement du convertisseur, cette fonction doit être désactivée. (Voir également la Section 4.5) Ce paramètre n’est pas réglable par des interrupteurs DIP.

Courbe de charge de la batterie
La charge standard est « adaptative en quatre étapes avec le mode BatterySafe ». Voir la section 2 pour une description. C'est la principale caractéristique de charge. Consultez les fichiers d’aide du logiciel de configuration pour en savoir plus sur les autres fonctionnalités.

Le mode « fixe » peut être sélectionné par des interrupteurs DIP.

Type de batterie
La configuration standard est la mieux adaptée aux batteries Victron Gel Deep Discharge, Gel Exide A200 et aux batteries fixes à plaques tubulaires (GPZS). Cette configuration peut également être utilisée pour de nombreuses autres batteries telles que les batteries Victron AGM Deep Discharge et d'autres batteries AGM, et de nombreux types de batteries ouvertes à plaques planes. Les interrupteurs DIP permettent de configurer quatre tensions de charge.

Avec VEConfigure la courbe de charge peut être ajustée pour charger tout type de batterie (batterie au nickel-cadmium, batterie Lithium-lon)

Charge d'égalisation automatique
Cette configuration est destinée aux batteries de traction à plaques tubulaires. Pendant l’absorption, la limite de tension augmente à 2,83 V cellule (34 V pour les batteries de 24 V) une fois que le courant de charge est réduit à moins de 10 % du courant maximal configuré.

Ce paramètre n’est pas réglable par des interrupteurs DIP.

Durée d’absorption
Elle dépend de la durée « Bulk » (caractéristique de charge adaptative) pour que la batterie soit chargée de manière optimale. Si la caractéristique de charge « fixe » est sélectionnée, la durée d’absorption est fixe. Pour la plupart des batteries, une durée d’absorption maximale de huit heures est appropriée. Si une tension d’absorption élevée supplémentaire est sélectionnée pour une charge rapide (possible uniquement pour les batteries ouvertes et à électrolyte liquide !), quatre heures sont préférables. Avec les interrupteurs DIP, il est possible de configurer huit ou quatre heures. Pour la caractéristique de charge adaptative, ce paramètre détermine la durée d’absorption maximale.

Tension de veille, durée d’absorption répétée, intervalle de répétition d’absorption
Voir la section 2. Ce paramètre n’est pas réglable par des interrupteurs DIP.
Protection bulk
Lorsque ce paramètre est défini sur « on », la durée de la charge bulk est limitée à 10 heures. Un temps de charge supérieure peut indiquer une erreur système (par exemple le court-circuit d'une cellule de batterie). Ce paramètre n'est pas réglable par des interrupteurs DIP.

Limite de courant CA AC-in-1 (générateur) / AC-in-2 (alimentation de quai/réseau)
Il s'agit de la configuration de la limite de courant qui déclenche l'activation des fonctions PowerControl et PowerAssist.
Plage de configuration PowerAssist :
- De 5,3 A à 50A pour l'entrée AC-in-1
- De 5,3A à 50A pour l'entrée AC-in-2
Configuration d'usine : la valeur maximale (50 A ou 16A).
En cas d'appareils montés en parallèle, la plage des valeurs minimale et maximale doit être multipliée par le nombre d'unités en parallèle.
Voir la section 2, le livre « Énergie illimitée » ou les nombreuses descriptions de cette fonction unique sur notre site web www.victronenergy.com.

Fonction UPS
Si ce paramètre est défini sur « on » et que la tension d'entrée CA est défaillante, le Quattro bascule en mode convertisseur pratiquement sans interruption. Le Quattro peut alors être utilisé comme un système d'alimentation sans interruption (UPS) pour les équipements sensibles, comme les ordinateurs ou les systèmes de communication.
La tension de sortie de certains petits générateurs est trop instable et déformée pour utiliser ce paramètre – le Quattro basculerait en permanence en mode convertisseur. Pour cette raison, ce paramètre peut être désactivé. Le Quattro répondra alors moins rapidement aux écarts de tension sur AC-in-1 ou AC-in-2. Le temps de basculement en mode convertisseur est donc légèrement plus long, mais la plupart des équipements (ordinateurs, horloges ou appareils ménagers) ne seront pas défavorablement touchés.
Recommandation : désactiver la fonction UPS si le Quattro échoue à se synchroniser ou bascule en permanence en mode convertisseur.

Limiteur de courant dynamique
Conçue pour les générateurs, la tension CA est générée au moyen d'un convertisseur statique (appelé générateur « convertisseur »). La vitesse de rotation de ces générateurs est modérée si la charge est faible : cela réduit le bruit, la consommation de carburant et la pollution. Un inconvénient est que la tension de sortie chute gravement, ou même sera totalement coupée, dans le cas d'une augmentation brusque de la charge. Une charge supérieure peut être fournie uniquement après que le moteur a accéléré sa vitesse.
Si ce paramètre est défini sur « on », le Quattro commencera à délivrer plus de puissance à un faible niveau de sortie du générateur et il permettra progressivement à ce dernier de fournir davantage d'alimentation, jusqu'à ce que la limite de courant définie soit atteinte. Cela permet au moteur du générateur d'accélérer sa vitesse.
Ce paramètre est également souvent utilisé pour les générateurs « classiques » qui répondent lentement aux variations brusques de charge.

WeakAC
Une forte déformation de la tension d'entrée peut entraîner le chargeur à moins bien fonctionner ou à ne plus fonctionner du tout. Si WeakAC est activé, le chargeur acceptera également une tension fortement déformée, au prix d'une déformation plus importante du courant d'entrée.
Recommandation : activez WeakAC si le chargeur charge mal ou pas du tout (ce qui est plutôt rare !). De même, activez simultanément le limiteur de courant dynamique et réduisez le courant de charge maximal pour empêcher la surcharge du groupe si nécessaire.
Note : quand la fonction WeakAC est allumée, le courant de charge maximal est réduit d'environ 20 %.
Ce paramètre n'est pas réglable par des interrupteurs DIP.

BoostFactor
Modifier ce réglage uniquement après avoir consulté Victron Energy ou avec un technicien formé par Victron Energy ! Ce paramètre n'est pas réglable par des interrupteurs DIP.

Trois relais programmables
Le Quattro est équipé de 3 relais programmables. Les relais peuvent être programmés pour tous types d'applications, comme par exemple en tant que relais de démarrage pour un générateur. La configuration par défaut du relais sur la position I est « alarme » (voir annexe A, en haut à droite).
Ce paramètre n'est pas réglable par des interrupteurs DIP.

Déplacement de fréquence
Si les convertisseurs solaires sont connectés à la sortie d'un Multi ou d'un Quattro, l'excédent d'énergie solaire sera utilisé pour recharger les batteries. Une fois que la tension d'absorption est atteinte, le Multi ou le Quattro éteint le convertisseur solaire en déplaçant la fréquence de sortie de 1 Hz (par exemple de 50 Hz à 51 Hz). Une fois que la tension de la batterie a légèrement baissé, la fréquence revient à sa position normale et les convertisseurs solaires redémarrent.
Ce paramètre n'est pas réglable par des interrupteurs DIP.

Monitor de batterie intégré (en option)
La solution idéale est que le Multi et le Quattro fassent partie d'un système hybride (générateur diesel, convertisseurs/chargeurs,accumulateur, et énergie alternative). Le moniteur de batterie intégré peut être configuré pour démarrer ou arrêter le générateur :
- démarrer (avec un retard préconfiguré) à une tension de batterie préconfigurée, et/ou
- démarrer (avec un retard préconfiguré) à un niveau de charge préconfiguré.
- arrêter à une tension de batterie préconfigurée, ou
- arrêter (avec un retard préconfiguré) après l'achèvement de la phase de charge Bulk, et/ou
- arrêter (avec un retard préconfiguré) à un niveau de charge préconfiguré.
Ce paramètre n'est pas réglable par des interrupteurs DIP.
Sortie CA auxiliaire (AC-out-2)
En plus de la sortie sans interruption (AC-out-1), une seconde sortie (AC-out-2) est disponible pour déconnecter sa charge en cas de fonctionnement de la batterie. Exemple : une chaudière électrique ou un climatiseur ne pouvant fonctionner que si le générateur est en marche ou si une puissance de quai est disponible.
En cas de fonctionnement de la batterie, la sortie AC-out-2 se coupe immédiatement. Une fois que l'alimentation CA est disponible, la sortie AC-out-2 se reconnecte dans un délai de 2 minutes, ce qui permet au générateur de se stabiliser avant de se connecter à une charge lourde.
5.3 Configuration par ordinateur

Tous les réglages peuvent être modifiés par ordinateur ou via un tableau de commande VE.Net (à l’exception du relais multifonction et du VirtualSwitch avec VE.Net).
La plupart des réglages ordinaires peuvent être modifiés par l’intermédiaire d’interrupteurs DIP (voir la section 5.5).

REMARQUE :

Ce manuel est destiné aux produits ayant un micrologiciel xxxx400 ou de version supérieure (avec x nombre quelconque).
Le numéro du micrologiciel se trouve sur le microprocesseur — une fois le panneau avant retiré.
Il est possible de mettre à jour des unités plus anciennes, tant que ce même numéro à 7 chiffres commence soit par 26 soit par 27. Lorsque le numéro de la version commence par 19 ou 20, vous disposez d’un microprocesseur ancien, et il n’est plus possible de le mettre à jour à la version 400 ou supérieure.

Pour modifier les paramètres par ordinateur, les conditions suivantes sont requises :
- Une interface MK3-USB (VE.Bus-à-USB) et un câble RJ45 UTP.
 Sinon, il est possible d’utiliser l’interface MK2.2b (VE.Bus-à-RS232) et un câble RJ45 UTP.

5.3.1 VE.Bus Quick Configure Setup

5.3.2 VE.Bus System Configurator

Pour configurer des applications avancées et/ou des systèmes avec quatre Multi ou plus, il est nécessaire d’utiliser le logiciel **VE.Bus System Configurator**. Vous pouvez télécharger gratuitement le logiciel VEConfigure3 sur notre site web : www.victronenergy.fr.

5.4 Configuration avec un tableau de commande VE.Net

Pour ce faire, un tableau de commande VE.Net et le convertisseur VE.Net - VE.Bus sont requis.
Avec VE.Net, vous pouvez configurer tous les réglages, à l’exception du relais multifonction et du VirtualSwitch.
5.5 Configuration avec les interrupteurs DIP

Introduction
Un certain nombre de réglages peuvent être modifiés avec les interrupteurs DIP (voir l'annexe A, position M).

Remarque : Lorsque l'on change des paramètres avec des interrupteurs DIP sur un système en parallèle/phase auxiliaire/triphasée, il faut savoir que tous les paramètres ne sont pas applicables sur tous les Quattro. Cela est dû au fait que certains paramètres seront dictés par le Maître ou le Meneur.

Certains paramètres ne s'appliqueront que sur le Maître/Meneur (c.à.d. qu'ils ne le sont pas sur un esclave ou un suiveur). D'autres paramètres ne s'appliqueront pas pour les esclaves, mais si pour les suiveurs.

Note sur la terminologie utilisée :
Un système dans lequel plus d'un Quattro est utilisé pour créer une phase unique CA, est appelé un système parallèle. Dans ce cas, l'un des Quattro contrôlera l'ensemble de la phase, et il sera appelé le maître. Les autres, appelés esclaves, écouteront le maître pour déterminer leur action.

Il est également possible de créer davantage de phases CA (auxiliaire ou triphasée) avec 2 ou 3 Quattro. Dans ce cas, le Quattro en Phase L1 est appelé le Meneur. Les Quattro en Phase L2 et L3 (et L3 si disponible) généreront la même fréquence CA, mais suivront L1 avec un déplacement de phase fixe. Ces Quattro sont appelés des suiveurs.

Si davantage de Quattro sont utilisés par phase dans un système à phase auxiliaire ou triphasée (par exemple, 6 Quattro utilisés pour composer un système triphasé avec 2 Quattro par phase), alors le Meneur du système est également le Maître de la phase L1. Les Suiveurs dans les phases L2 et L3 prendront également le rôle du Maître dans les phases L2 et L3. Tous les autres seront des esclaves.

La configuration de systèmes tripasés/en phase divisée devrait être réalisée par logiciel. Voir le paragraphe 5.3.

Astuce : Si vous ne souhaitez pas vous préoccuper du fait qu'un Quattro soit un maître/esclave/suiveur, alors, le meilleur moyen est de configurer tous les paramètres de la même façon sur tous les Quattro.

Procédure générale :
Mettez le Quattro en marche, de préférence déchargé et sans tension CA sur les entrées. Le Quattro fonctionne alors en mode convertisseur.

Étape 1 : Configurez les interrupteurs DIP pour :
- la limite de courant requise de l'entrée CA. (pas important pour les esclaves)
- limite du courant de charge. (uniquement important pour Maître/Meneur)

Appuyez sur le bouton « Up » pendant 2 secondes (bouton supérieur à droite des interrupteurs DIP : voir l'annexe A, position K) pour enregistrer les paramètres une fois que les valeurs requises ont été configurées. Vous pouvez désormais réutiliser les interrupteurs DIP pour appliquer les réglages restants (étape 2).

Étape 2 : autres paramètres – Configurer les interrupteurs DIP pour :
- Tensions de charge (uniquement important pour Maître/Meneur)
- Durée d'absorption (uniquement important pour Maître/Meneur)
- Charge adaptative (uniquement important pour Maître/Meneur)
- Limiteur de courant dynamique (pas important pour les esclaves)
- Fonction UPS (pas important pour les esclaves)
- Tension de convertisseur (pas important pour les esclaves)
- Fréquence du convertisseur (uniquement important pour Maître/Meneur)

Appuyez sur le bouton « Down » pendant 2 secondes (bouton en bas à droite des interrupteur DIP) pour enregistrer les paramètres dès que les interrupteurs DIP ont été configurés sur la position correcte. A présent vous pouvez laisser les interrupteurs DIP dans les positions sélectionnées, afin que les « autres réglages » puissent toujours être récupérés.

Remarque :
- Les fonctions d'interrupteur DIP sont décrites « de haut en bas ». Puisque l'interrupteur DIP le plus haut possède le numéro le plus élevé (8), les descriptions commencent avec l'interrupteur numéroté 8.

5.5.1 Étape 1
5.5.1.1 Limite de courant pour les entrées CA (par défaut : AC-in-1: 50 A, AC-in-2 : 16A)

Si le courant d'entrée CA extrait par le Quattro (en raison des charges connectées et le chargeur de batterie) augmente et qu'il va dépasser la limite de courant d'entrée CA, le Quattro réduira d'abord son courant de charge (PowerControl) et par conséquent, si cela est nécessaire, apporter une puissance supplémentaire à l'aide de la batterie (PowerAssist). De cette manière, le Quattro essayera d'empêcher que le courant d'entrée ne dépasse la limite établie.

La limite de courant de l'entrée AC-in-1 (le générateur) peut être définie sur huit valeurs différentes par l'intermédiaire des interrupteurs DIP.

La limite de courant de l'entrée CA-in-2 peut être définie sur huit valeurs différentes par l'intermédiaire des interrupteurs DIP.

Avec un tableau de commande Multi Control, une limite de courant variable peut être définie pour l'entrée CA-in-2.
Procédure
L’entrée AC-in-1 peut être définie à l’aide des interrupteurs DIP ds8, ds7 et ds6 (réglage par défaut : 50A).
Procédure : configurez les interrupteurs DIP sur les valeurs requises :

\[
\begin{array}{ccc}
ds8 & ds7 & ds6 \\
\text{off} & \text{off} & \text{off} = 6 \, \text{A (1,4 kVA à 230 V)} \\
\text{off} & \text{off} & \text{on} = 10 \, \text{A (2,3 kVA à 230 V)} \\
\text{off} & \text{on} & \text{off} = 12 \, \text{A (2,8 kVA à 230 V)} \\
\text{off} & \text{on} & \text{on} = 16 \, \text{A (3,7 kVA à 230 V)} \\
\text{on} & \text{off} & \text{off} = 20 \, \text{A (4,6 kVA à 230 V)} \\
\text{on} & \text{off} & \text{on} = 25 \, \text{A (5,7 kVA à 230 V)} \\
\text{on} & \text{on} & \text{off} = 30 \, \text{A (6,9 kVA à 230 V)} \\
\text{on} & \text{on} & \text{on} = 50 \, \text{A (11,5 kVA à 230 V)} \\
\end{array}
\]

Remarque : Les indications de puissance continue des fabricants de petits générateurs ont parfois tendance à être plutôt optimistes. Dans ce cas, la limite de courant doit être définie sur une valeur plus basse que la valeur calculée à partir des informations du fabricant.

AC-in-2 peut être configurée en deux étapes en utilisant l'interrupteur DIP ds5 (réglage par défaut : 16A).
Procédure : configurez ds5 sur la valeur requise :

\[
\begin{array}{c}
ds5 \\
\text{off} = 16 \text{A} \\
\text{on} = 30 \text{A} \\
\end{array}
\]

Plus de 30 A : avec le logiciel VECconfigure ou un Tableau de commande numérique MultiControl.

Important : Si un tableau de commande est connecté, la limite de courant de l'AC-in-2 est déterminée par le tableau de commande et non par la valeur enregistrée dans le Quattro.

5.5.1.2 Limite du courant de charge (réglage par défaut 75 %)
Pour une longévité accrue de la batterie au plomb, un courant de charge de 10 à 20 % de la capacité en Ah doit être appliqué. Exemple : courant de charge optimal d'un banc de batterie 24 V / 500 Ah : 50A à 100A.
La sonde de température fournie règle automatiquement la tension de charge en fonction de la température de la batterie.
Si une charge plus rapide – et pour autant un courant plus élevé – est requise :
- la sonde de température fournie doit être toujours installée sur la batterie, puisque la charge rapide peut entraîner une forte montée en température du banc de batterie. La tension de charge sera adaptée à la plus haute température (c'est-à-dire baissée) par l'intermédiaire d'une sonde de température.
- le temps de charge « Bulk » sera parfois si court qu'une durée d'absorption fixe serait plus satisfaisante (durée d'absorption fixe, voir ds5, étape 2).

Procédure
Le courant de charge de la batterie peut être défini en quatre étapes, par l’intermédiaire des interrupteurs DIP ds4 et ds3 (réglage par défaut : 75 %).
\[
\begin{array}{ccc}
ds4 & ds3 \\
\text{off} & \text{off} = 25 \% \\
\text{off} & \text{on} = 50 \% \\
\text{on} & \text{off} = 75 \% \\
\text{on} & \text{on} = 100 \% \\
\end{array}
\]

Note : quand la fonction WeakAC est allumée, le courant de charge maximal est réduit de 100 % à environ 80 %.

5.5.1.3 Les interrupteurs DIP ds2 et ds1 ne sont pas utilisés durant l'étape 1.

NOTE IMPORTANTE :
Si les 3 derniers chiffres du micrologiciel du Multi se trouvent sur la plage de 100 (le numéro du micrologiciel étant donc xxxx1xx – avec x nombre quelconque), alors les ds1 et ds2 sont utilisés pour configurer un Multi en mode indépendant, parallèle ou triphasé. Veuillez consulter le manuel correspondant.
5.5.1.4 Exemples

exemples de paramètres :

Nous recommandons de noter les réglages et de conserver ces informations en lieu sûr.

Les interrupteurs DIP peuvent être utilisés pour appliquer les paramétrages restants (étape 2).

5.5.2 Étape 2 : autres réglages

Les réglages restants ne sont pas applicables (NA) aux esclaves. Certains des réglages restants ne sont pas applicables aux suiveurs (L2, L3). Ces réglages sont imposés à l’ensemble du système par le meneur L1. Si un réglage n’est pas applicable aux appareils L2, L3, cela sera indiqué explicitement.

ds8-ds7 : Réglage des tensions de charge (non applicable à L2, L3)

<table>
<thead>
<tr>
<th>ds8-ds7</th>
<th>Tension d’absorption</th>
<th>Tension float</th>
<th>Tension de veille</th>
<th>Convient pour</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>14,1</td>
<td>13,2</td>
<td>Gel Victron Long Life (OPzV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28,2</td>
<td>26,4</td>
<td>Gel Exide A600 (OPzV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56,4</td>
<td>52,8</td>
<td>Gel MK battery</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>14,4</td>
<td>13,2</td>
<td>Gel Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28,8</td>
<td>26,4</td>
<td>Gel Exide A200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57,6</td>
<td>52,8</td>
<td>Batterie fixe à plaques tubulaires (OPzS)</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>14,7</td>
<td>13,2</td>
<td>AGM Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29,4</td>
<td>26,4</td>
<td>Batteries traction à plaques tubulaires (OPzS) en mode « semi-Float »</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58,8</td>
<td>52,8</td>
<td>AGM à cellules en spirale</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>15,0</td>
<td>13,2</td>
<td>Batteries de traction à plaques tubulaires (OPzS) en mode cyclique</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,0</td>
<td>26,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60,0</td>
<td>52,8</td>
<td></td>
</tr>
</tbody>
</table>

Étape 1, indépendant
Exemple 1 (réglage d’usine) :
8, 7, 6 AC-in-1 : 50A
5 AC-in-2 : 30A
4, 3 Courant de charge : 75%
2, 1 Mode indépendant

Étape 1, indépendant
Exemple 2 :
8, 7, 6 AC-in-1 : 16A
5 AC-in-2 : 16A
4, 3 Charge : 100%
2, 1 Indépendant

Étape 1, indépendant
Exemple 3 :
8, 7, 6 AC-in-1 : 16A
5 AC-in-2 : 16A
4, 3 Charge : 100%
2, 1 Indépendant

Étape 1, indépendant
Exemple 4 :
8, 7, 6 AC-in-1 : 30A
5 AC-in-2 : 30A
4, 3 Charge : 50%
2, 1 Indépendant

Nous recommandons de noter les réglages et de conserver ces informations en lieu sûr.

Les interrupteurs DIP peuvent être utilisés pour appliquer les paramétrages restants (étape 2).

Nous recommandons de noter les réglages et de conserver ces informations en lieu sûr.

Les interrupteurs DIP peuvent être utilisés pour appliquer les paramétrages restants (étape 2).

5.5.2 Étape 2 : autres réglages

Les réglages restants ne sont pas applicables (NA) aux esclaves. Certains des réglages restants ne sont pas applicables aux suiveurs (L2, L3). Ces réglages sont imposés à l’ensemble du système par le meneur L1. Si un réglage n’est pas applicable aux appareils L2, L3, cela sera indiqué explicitement.

ds8-ds7 : Réglage des tensions de charge (non applicable à L2, L3)

<table>
<thead>
<tr>
<th>ds8-ds7</th>
<th>Tension d’absorption</th>
<th>Tension float</th>
<th>Tension de veille</th>
<th>Convient pour</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>14,1</td>
<td>13,2</td>
<td>Gel Victron Long Life (OPzV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28,2</td>
<td>26,4</td>
<td>Gel Exide A600 (OPzV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56,4</td>
<td>52,8</td>
<td>Gel MK battery</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>14,4</td>
<td>13,2</td>
<td>Gel Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28,8</td>
<td>26,4</td>
<td>Gel Exide A200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57,6</td>
<td>52,8</td>
<td>Batterie fixe à plaques tubulaires (OPzS)</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>14,7</td>
<td>13,2</td>
<td>AGM Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29,4</td>
<td>26,4</td>
<td>Batteries traction à plaques tubulaires (OPzS) en mode « semi-Float »</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58,8</td>
<td>52,8</td>
<td>AGM à cellules en spirale</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>15,0</td>
<td>13,2</td>
<td>Batteries de traction à plaques tubulaires (OPzS) en mode cyclique</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,0</td>
<td>26,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60,0</td>
<td>52,8</td>
<td></td>
</tr>
</tbody>
</table>

ds6 : durée d’absorption 8 ou 4 heures (non applicable pour L2, L3) on = 8 heures off = 4 heures

ds5 : caractéristique de charge adaptative (non applicable pour L2, L3) on = active off = inactive (inactive = durée d’absorption fixe)

ds4 : limiteur de courant dynamique on = actif off = inactif

ds3 : fonction UPS on = active off = inactive

ds2 : tension convertisseur on = 230 V off = 240 V

ds1 : fréquence convertisseur (non applicable pour L2, L3) on = 50 Hz off = 60 Hz (la large plage de fréquence d’entrée (45-55 Hz) est « on » par défaut)

Remarque :
- Si la fonction « Algorithme de charge adaptative » est activée, le ds6 établira la durée d’absorption maximale sur 8 ou 4 heures.
- Si la fonction « Algorithme de charge adaptative » n’est pas activée, la durée d’absorption est configurée sur 8 ou 4 heures (fixe) par le ds6.
Étape 2 : Paramètres types

L’exemple 1 illustre le réglage d’usine (comme les réglages d’usine sont effectués par ordinateur, tous les interrupteurs DIP d’un appareil neuf sont réglés sur « off » et ne reflètent pas les réglages dans le microprocesseur).

<table>
<thead>
<tr>
<th>DS-8 Courant de charge</th>
<th>DS-7 Tension de charge</th>
<th>DS-6 Durée d’absorption</th>
<th>DS-5 Charge adaptative</th>
<th>DS-4 Dyn. Limite de courant</th>
<th>DS-3 Fonction UPS</th>
<th>DS-2 Tension</th>
<th>DS-1 Fréquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

| Étape 2 Exemple 2 : | Étape 2 Exemple 3 : | Étape 2 Exemple 4 :
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 7 GEL 14,4 V</td>
<td>8, 7 OPzV 14,1 V</td>
<td>8, 7 plaque tubulaire</td>
</tr>
<tr>
<td>6 Durée d’absorption : 8 heures</td>
<td>6 Durée d’absorption : 6 heures</td>
<td>15 V</td>
</tr>
<tr>
<td>5 Charge adaptative : on</td>
<td>5 Charge adaptative : on</td>
<td>6 Durée d’absorption : 4 heures</td>
</tr>
<tr>
<td>4 Limiteur de courant dynamique : off</td>
<td>4 Limiteur de courant dynamique : on</td>
<td>5 Durée d’absorption fixe</td>
</tr>
<tr>
<td>3 Fonction UPS : on</td>
<td>3 Fonction UPS : off</td>
<td>3 Fonction UPS : on</td>
</tr>
<tr>
<td>2 Tension : 230V</td>
<td>2 Tension : 240V</td>
<td>2 Tension : 240V</td>
</tr>
<tr>
<td>1 Fréquence : 50Hz</td>
<td>1 Fréquence : 50Hz</td>
<td>1 Fréquence : 60Hz</td>
</tr>
</tbody>
</table>

Pour enregistrer les paramètres dès que les valeurs requises ont été définies : appuyez sur le bouton « Down » pendant 2 secondes (bouton en bas à droite des interrupteurs DIP). Les LED « overload » et « low battery » clignoteront pour indiquer l’acceptation des réglages.

A présent vous pouvez laisser les interrupteurs DIP dans les positions sélectionnées, afin que les « autres réglages » puissent toujours être récupérés.
6. MAINTENANCE

7. INDICATIONS D'ERREUR

Remarque importante :
Lorsque la batterie est entièrement déchargée (tension de batterie inférieure à 10, 20 ou 40V), le Quattro ne commencera à charger que lorsqu'une puissance CA sera connectée à AC-in-1.
Pour que le Quattro commence à charger lorsque la puissance CA est connectée sur AC-in-2, la tension de batterie doit dépassée 10, 20 ou 40V.

7.1 Indication d'erreur générale
La procédure ci-dessous permet d'identifier rapidement la plupart des erreurs. Si une erreur ne peut pas être résolue, veuillez en référer à votre fournisseur Victron Energy.

<table>
<thead>
<tr>
<th>Problème</th>
<th>Cause possible</th>
<th>Solution possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Quattro ne bascule pas sur le générateur ou en mode secteur.</td>
<td>Le disjoncteur ou le fusible dans l'entrée AC-in est ouvert à la suite d'une surcharge.</td>
<td>Supprimer la surcharge ou le court-circuit sur AC-out-1 ou AC-out-2 et remplacer le fusible/disjoncteur.</td>
</tr>
<tr>
<td>Le convertisseur ne démarre pas à la mise en marche.</td>
<td>La tension de batterie est trop haute ou trop basse. Aucune tension sur la connexion CC.</td>
<td>S'assurer que la tension de batterie est dans la plage correcte.</td>
</tr>
<tr>
<td>La LED « low battery » clignote.</td>
<td>La tension de batterie est faible.</td>
<td>Chargez la batterie ou vérifiez les raccordements de batterie.</td>
</tr>
<tr>
<td>La LED « low battery » est allumée.</td>
<td>Le convertisseur s'est arrêté parce que la tension de batterie est trop faible.</td>
<td>Chargez la batterie ou vérifiez les raccordements de batterie.</td>
</tr>
<tr>
<td>La LED « overload » clignote.</td>
<td>La charge du convertisseur est plus élevée que la charge nominale.</td>
<td>Réduisez la charge.</td>
</tr>
<tr>
<td>La LED « overload » est allumée.</td>
<td>Le convertisseur s'est arrêté parce que la charge est trop élevée.</td>
<td>Réduisez la charge.</td>
</tr>
<tr>
<td>La LED « temperature » clignote ou est allumée.</td>
<td>La température ambiante est élevée ou la charge est trop élevée.</td>
<td>Installer le convertisseur dans un environnement frais et bien ventilé ou réduire la charge.</td>
</tr>
<tr>
<td>Les LED « low battery » et « overload » clignotent.</td>
<td>La tension de batterie est faible et la charge est trop élevée.</td>
<td>Charger les batteries, débrancher ou réduire la charge, ou installer des batteries d’une capacité supérieure. Installer des câbles de batterie plus courts et/ou plus épais, puis réinitialiser le convertisseur (arrêter et redémarrer).</td>
</tr>
<tr>
<td>Les LED « low battery » et « overload » sont allumées.</td>
<td>La tension d’ondulation sur la connexion CC dépasse 1,5 V.</td>
<td>Vérifier les raccordements de batterie et les câbles de batterie. Contrôler si la capacité de batterie est suffisamment élevée et l'augmenter si nécessaire.</td>
</tr>
<tr>
<td>Une LED d’alarme s'allume et la seconde clignote.</td>
<td>Le convertisseur s'est arrêté parce que l'alarme de la LED allumée est activée.</td>
<td>Se référer à ce tableau sur les mesures appropriées à prendre en fonction de l'état d’alarme.</td>
</tr>
<tr>
<td>Le chargeur ne fonctionne pas.</td>
<td>La tension ou la fréquence de l'entrée CA n'est pas dans la plage définie.</td>
<td>S'assurer que l'entrée CA est comprise entre 185 V CA et 265 V CA, et que la fréquence est dans la plage définie (45-65 Hz par défaut).</td>
</tr>
<tr>
<td>Le disjoncteur ou le fusible dans l'entrée AC-in est ouvert à la suite d'une surcharge.</td>
<td>Supprimer la surcharge ou le court-circuit sur AC-out-1 ou AC-out-2 et remplacer le fusible/disjoncteur.</td>
<td></td>
</tr>
<tr>
<td>Le fusible de la batterie a grillé.</td>
<td>Remplacer le fusible de la batterie.</td>
<td></td>
</tr>
<tr>
<td>Le défaillance ou la tension de l’entrée CA est trop grande (généralement alimentation génératrices).</td>
<td>Activiser les paramètres WeakAC et limiter de courant dynamique.</td>
<td></td>
</tr>
<tr>
<td>Le Quattro est en mode « Protection Bulk » car le temps de charge bulk maximal de 10 heures est dépassé.</td>
<td>Supprimer la surcharge ou le court-circuit sur AC-out-1 ou AC-out-2 et remplacer le fusible/disjoncteur.</td>
<td></td>
</tr>
<tr>
<td>État de charge</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>La durée d’absorption est trop courte. Pour une charge adaptative, cela peut être provoqué par un courant de charge très élevé par rapport à la capacité de la batterie et, par conséquent, la durée bulk est insuffisante.</td>
<td>Réduire le courant de charge ou sélectionner la caractéristique de charge fixe.</td>
<td></td>
</tr>
<tr>
<td>La batterie est surchargée.</td>
<td>La tension d’absorption est définie sur une valeur incorrecte (trop élevée).</td>
<td>Régler la tension d’absorption sur une valeur correcte.</td>
</tr>
<tr>
<td></td>
<td>La tension float est définie sur une valeur incorrecte (trop élevée).</td>
<td>Régler la tension float sur une valeur correcte.</td>
</tr>
<tr>
<td></td>
<td>Condition de la batterie défaillante.</td>
<td>Remplacez la batterie.</td>
</tr>
<tr>
<td>La température de la batterie est trop élevée (à cause d’une ventilation insuffisante, d’une température ambiante trop élevée ou d’un courant de charge trop important).</td>
<td></td>
<td>Améliorer la ventilation, installer les batteries dans un environnement plus frais, réduire le courant de charge et raccorder la sonde de température.</td>
</tr>
<tr>
<td>Le courant de charge chute à 0 dès que la phase d’absorption démarre.</td>
<td>La batterie est en surchauffe (>50 °C)</td>
<td>Installer la batterie dans un environnement plus frais. Réduire le courant de charge. Vérifier si l’une des cellules de la batterie ne présente pas un court-circuit interne.</td>
</tr>
<tr>
<td></td>
<td>Sonde de température de la batterie défectueuse</td>
<td>Débrancher la fiche de la sonde de batterie du Quattro. Si la charge fonctionne correctement après environ 1 minute, c’est que la sonde de température doit être remplacée.</td>
</tr>
</tbody>
</table>
7.2 Indications des LED spéciales
(pour les indications des LED normales, voir la section 3.4)

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
<th>État interne possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les LED bulk et absorption clignotent de manière synchronisée (simultanément).</td>
<td>Erreur de la sonde de tension. La tension mesurée sur la connexion de la sonde de tension s'écarte trop (plus de 7 V) de la tension sur les connexions positive et négative de l'appareil. Il s'agit probablement d'une erreur de connexion. L'appareil reste en fonctionnement normal. REMARQUE : Si la LED « inverter on » clignote en opposition de phase, il s'agit d'un code d'erreur VE.Bus (voir ci-après).</td>
<td></td>
</tr>
<tr>
<td>Les LED float et absorption clignotent de manière synchronisée (simultanément).</td>
<td>La température de la batterie mesurée présente une valeur absolument invraisemblable. La sonde est probablement défectueuse ou est connectée improprement. L'appareil reste en fonctionnement normal. REMARQUE : Si la LED « inverter on » clignote en opposition de phase, il s'agit d'un code d'erreur VE.Bus (voir ci-après).</td>
<td></td>
</tr>
<tr>
<td>La LED « mains on » clignote et il n'existe aucune tension de sortie.</td>
<td>L'appareil est en mode « charger only » et l'alimentation secteur est présente. L'appareil rejette l'alimentation secteur ou est en cours de synchronisation.</td>
<td></td>
</tr>
</tbody>
</table>

7.3 Indications des LED du VE.Bus

7.3.1 Codes OK du VE.Bus
Si l'état interne d'un appareil est en ordre mais que l'appareil ne peut pas démarrer parce qu'un ou plusieurs appareils du système signalent un état d'erreur, les appareils qui sont en ordre signaleront un code OK. Cela facilite le suivi d'erreur dans un système VE.Bus, puisque les appareils en bon état sont facilement identifiés comme tels.

Important : les codes OK s'afficheront uniquement si un appareil n'est pas en mode convertisseur ou chargeur !
- Une LED « Bulk » clignotante signale que l'appareil peut fonctionner en mode convertisseur.
- Une LED « Float » clignotante signale que l'appareil peut fonctionner en mode chargeur.
REMARQUE : en principe, toutes les autres LED doivent être éteintes. Si ce n'est pas le cas, le code n'est pas un code OK. Cependant, les exceptions suivantes s'appliquent :
- Les indications des LED spéciales ci-dessus peuvent se produire avec les codes OK.
- la LED « low battery » peut fonctionner avec le code OK qui indique que l'appareil peut charger.

7.3.2 Code d'erreur du VE.Bus
Un système VE.Bus peut afficher différents codes d'erreur. Ces codes sont affichés par l'intermédiaire des LED « inverter on », « bulk », « absorption » et « float ».

Pour interpréter correctement un code d'erreur VE.Bus, la procédure suivante doit être respectée :
1. L'appareil doit avoir un problème (pas de sortie CA).
2. Est-ce que la LED « inverter on » clignote ? Si ce n'est pas le cas, il ne s'agit pas d'un code d'erreur VE.Bus.
3. Si une ou plusieurs LED « Bulk », « absorption » ou « Float » clignotent, alors ce clignotement doit être en opposition de phase avec la LED « inverter on », c'est-à-dire que les LED clignotantes sont éteintes lorsque la LED « inverter on » est allumée, et vice versa. Si ce n'est pas le cas, il ne s'agit pas d'un code d'erreur VE.Bus.
5. Sélectionner la colonne et la rangée correctes (en fonction des LED « absorption » et « Float »), puis déterminer le code d'erreur.
6. Déterminer la signification du code dans le tableau suivant.
LED bulk et éteinte

<table>
<thead>
<tr>
<th>LED bulk éteinte</th>
<th>LED absorption</th>
<th>LED « Bulk » clignotante</th>
<th>LED « Bulk » allumée</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>off</td>
<td>clignotante</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Signification</th>
<th>Cause/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L'appareil s'est arrêté parce que l'une des autres phases du système s'est arrêtée.</td>
<td>Vérifier la phase défaillante.</td>
</tr>
<tr>
<td>3</td>
<td>Tous les appareils précédus n'ont pas été trouvés dans le système ou trop d'appareils ont été trouvés.</td>
<td>Le système n'est pas correctement configuré. Reconfigurer le système.</td>
</tr>
<tr>
<td>4</td>
<td>Pas d'autre appareil détecté.</td>
<td>Vérifier les câbles de communication.</td>
</tr>
<tr>
<td>5</td>
<td>Surtension sur AC-out.</td>
<td>Vérifier les câbles CA.</td>
</tr>
<tr>
<td>10</td>
<td>La synchronisation du temps système a rencontré un problème.</td>
<td>Cela ne doit pas se produire avec un appareil correctement installé. Vérifier les câbles de communication.</td>
</tr>
<tr>
<td>14</td>
<td>L'appareil ne peut pas transmettre de données.</td>
<td>Vérifier les câbles de communication (il peut exister un court-circuit).</td>
</tr>
<tr>
<td>17</td>
<td>L'un des appareils a pris le rôle de « maître » parce que le maître d'origine est en panne.</td>
<td>Vérifier l'appareil défaillant. Vérifier les câbles de communication.</td>
</tr>
<tr>
<td>18</td>
<td>Une surtension s'est produite.</td>
<td>Vérifier les câbles CA.</td>
</tr>
<tr>
<td>22</td>
<td>Cet appareil ne peut pas fonctionner comme « esclave ».</td>
<td>Cet appareil est un modèle inadapté et obsolète. Il doit être remplacé.</td>
</tr>
<tr>
<td>24</td>
<td>La protection du système de transfert s'est enclenchée.</td>
<td>Cela ne doit pas se produire avec un appareil correctement installé. Arrêter tous les appareils, puis les redémarrer. Si le problème persiste, vérifier l'installation.</td>
</tr>
<tr>
<td>25</td>
<td>Incompatibilité du micrologiciel (firmware). Le micrologiciel de l'un des appareils connectés n'est pas suffisamment à jour pour fonctionner conjointement avec cet appareil.</td>
<td>Solution possible : augmenter la limite inférieure de la tension d'entrée CA à 210 VCA (configuration d'usine à 180 VCA)</td>
</tr>
<tr>
<td>26</td>
<td>Erreur interne.</td>
<td>Ne doit pas se produire. Arrêter tous les appareils, puis les redémarrer. Contacter Victron Energy si le problème persiste.</td>
</tr>
</tbody>
</table>

WARNING:

All conditions must be met!

7. L’appareil a un problème ! (pas de sortie CA)
8. Les LED du convertisseur clignotent (contrairement à une l’une des LED Bulk, Absorption ou Float, quelle qu’elle soit)
9. Au moins une des LED Bulk, Absorption et Float est allumée ou clignote

LED bulk et éteinte

<table>
<thead>
<tr>
<th>LED bulk</th>
<th>LED absorption</th>
<th>LED « Bulk » clignotante</th>
<th>LED « Bulk » allumée</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>off</td>
<td>clignotante</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

LED absorption

<table>
<thead>
<tr>
<th>LED « Bulk » clignotante</th>
<th>LED « Bulk » allumée</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

LED float

<table>
<thead>
<tr>
<th>LED float</th>
<th>LED absorption</th>
<th>LED « Bulk » clignotante</th>
<th>LED « Bulk » allumée</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>off</td>
<td>clignotante</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>23</td>
<td>26</td>
</tr>
</tbody>
</table>
8. SPÉCIFICATIONS TECHNIQUES

<table>
<thead>
<tr>
<th>Quattro</th>
<th>12/3000/120-50/50 230V</th>
<th>24/3000/70-50/50 230V</th>
<th>48/3000/35-50/50 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerControl / PowerAssist</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Commutateur de transfert intégré</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>2 entrées CA</td>
<td>Plage de tension d'alimentation : 187-265 VCA</td>
<td>Fréquence d'entrée : 45 – 65 Hz</td>
<td>Facteur de puissance : 1</td>
</tr>
<tr>
<td>Courant commutateur de transfert maximal (A)</td>
<td>AC-in-1 : 50A</td>
<td>AC-in-2 : 50A</td>
<td></td>
</tr>
<tr>
<td>Courant minimum PowerAssist (A)</td>
<td>AC-in-1 : 5,3A</td>
<td>AC-in-2 : 5,3A</td>
<td></td>
</tr>
<tr>
<td>CONVERTISSEUR</td>
<td>Plage de tension d'entrée (V CC)</td>
<td>9,5 – 17</td>
<td>19 – 33</td>
</tr>
<tr>
<td>Puissance de sortie du convertisseur à 25°C (VA)</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Puissance de sortie en continue à 25°C (W)</td>
<td>2400</td>
<td>2400</td>
<td>2400</td>
</tr>
<tr>
<td>Puissance de sortie en continue à 40°C (W)</td>
<td>2200</td>
<td>2200</td>
<td>2200</td>
</tr>
<tr>
<td>Puissance de sortie en continue à 65°C (W)</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
</tr>
<tr>
<td>Puissance de crête (W)</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>Efficacité maximale (%)</td>
<td>93</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>Puissance de charge zéro (W)</td>
<td>20</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Puissance de charge zéro en mode AES (W)</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Puissance de charge zéro en mode recherche (W)</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>CHARGEUR</td>
<td>Tension de charge « absorption » (V CC)</td>
<td>14,4</td>
<td>28,8</td>
</tr>
<tr>
<td>Tension de charge « float » (V CC)</td>
<td>13,8</td>
<td>27,6</td>
<td>55,2</td>
</tr>
<tr>
<td>Mode veille (V CC)</td>
<td>13,2</td>
<td>26,4</td>
<td>52,8</td>
</tr>
<tr>
<td>Courant de charge batterie de service (A)</td>
<td>120</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>Courant de charge de batterie de démarrage (A)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonde de température de batterie</td>
<td>Oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GÉNÉRAL</td>
<td>Sortie CA auxiliaire</td>
<td>Charge maxi. : 25A</td>
<td>S’arrête en mode convertisseur</td>
</tr>
<tr>
<td>Relais programmable (6)</td>
<td>Oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection (2)</td>
<td>a – g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caractéristiques communes</td>
<td>Température de fonctionnement : -40 à +65°C (refroidissement par ventilateur)</td>
<td>Humidité (sans condensation) : 95% max.</td>
<td></td>
</tr>
<tr>
<td>BOÎTIER</td>
<td>Caractéristiques communes</td>
<td>Matériel et Couleur en aluminium (bleu RAL 5012)</td>
<td>Degré de protection : IP 21</td>
</tr>
<tr>
<td>Raccordement batterie</td>
<td>4 boulons M8 (2 connexions positives et 2 connexions négatives)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connexion 230 VCA</td>
<td>Bornes à vis 13mm² (AWG 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poids (kg)</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (H x L x P en mm)</td>
<td>362 x 258 x 218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMES</td>
<td>Sécurité</td>
<td>EN 60335-1, EN 60335-2-29</td>
<td></td>
</tr>
<tr>
<td>Émission/Immunité</td>
<td>EN 55014-1, EN 55014-2, EN 61000-3-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Peut être réglé sur 60Hz et 240V
2) Protection
 a. Court-circuit de sortie
 b. Surcharge
 c. Tension de batterie trop élevée
 d. Tension de batterie trop faible
 e. Température trop élevée
 f. 230 VCA sur la sortie du convertisseur
 g. Ondulation de tension d'entrée trop
3) Charge non linéaire, facteur de crête 3:1
4) À 25°C ambiant
5) Relais programmable qui peut être configuré comme alarme générale, sous-tension CC ou comme fonction de démarrage/arrêt du générateur
HINWEIS:

1. SICHERHEITSHINWEISE

Allgemeines

Lesen Sie alle diesbezüglichen Produktinformationen sorgfältig durch, und machen Sie sich vor der Verwendung des Produktes mit den Sicherheitshinweisen und den Anleitungen vertraut. Nutzen Sie das Gerät nur für den vorgesehenen Anwendungsbereich.

WARNHINWEIS: ES BESTEHT DAS RISIKO VON STROMSCHLÄGEN.

Benutzen Sie das Gerät nie in gasgefährdeten oder staubbelasteten Räumen (Explosionsgefahr). Beachten Sie die Angaben des Herstellers der Batterie, um sicherzustellen, dass sie für die Verwendung mit diesem Produkt geeignet ist. Beachten Sie stets die Sicherheitshinweise des Batterieherstellers.

WARNHINWEIS: bewegen Sie schwere Lasten nie ohne Hilfe.

Installation

Lesen Sie die Einbauanweisungen sorgfältig, bevor Sie mit dem Einbau beginnen.

Überprüfen Sie vor dem Einschalten, ob die Spannungsquelle den Einstellungen laut Handbuch am Gerät entspricht.

Stellen Sie sicher, dass das Gerät entsprechend den vorgesehenen Betriebsbedingungen genutzt wird. Betreiben Sie das Gerät niemals in nasser oder staubiger Umgebung.

Sorgen Sie dafür, dass jederzeit ausreichend freier Lüftungsraum um das Gerät herum vorhanden ist, und dass die Lüftungsöffnungen nicht blockiert werden.

Installieren Sie das Gerät in brandsicherer Umgebung. Stellen Sie sicher, dass keine brennbaren Chemikalien, Plastikteile, Vorhänge oder andere Textilien in unmittelbarer Nähe sind.

Transport und Lagerung

Sorgen Sie dafür, dass während der Lagerung oder dem Transport die Hauptstromversorgung und die Batteriezuleitungen abgeklemmt sind.

Die Gewährleistung für Transportschäden erlischt, bei Transport des Gerätes in anderer als der Originalverpackung.

Die Lagerung des Produktes soll in trockener Umgebung bei Temperaturen zwischen −20° und +60°C erfolgen.

Beachten Sie die Herstellerhinweise zu Transport, Lagerung, Laden, Wiederauffladen und Entsorgung der Batterie.
2. BESCHREIBUNG

2.1 Allgemeines

Der Quattro ist ein äußerst leistungsfähiger Sinus-Wechselrichter in Kombination mit einem Batterieladegerät und einem automatischen Umschalter in einem gemeinsamen kompakten Gehäuse. Darüber hinaus hat der Quattro folgende zusätzliche und einzigartige Leistungsmerkmale:

Zwei Wechselstromeingänge; eingebauter Umschaltautomat zwischen Landstrom und Bordnetzgenerator.

Falls an beiden Anschlüssen Spannung anliegt, wählt der Quattro den Eingang AC-in-1 aus, an dem üblicherweise der Generator angeschlossen ist.

Zwei Wechselstromausgänge

Automatische unterbrechungsfreie Umschaltung

Falls die äußere Spannungsversorgung ausfällt (Landanschluss oder Generator schalten ab) übernimmt der Wechselrichter im Quattro automatisch die Versorgung der angeschlossenen Verbraucher. Dies geschieht so schnell, dass selbst Computer oder anderes elektronisches Gerät praktisch unterbrechungsfrei weiterarbeiten (Uninterruptible Power Supply oder UPS Funktionalität). Hierdurch eignet sich der Quattro hervorragend für die Notstromversorgung bei industriellen Anwendungen oder in der Telekommunikation. Der maximal schaltbare Strom liegt bei 30A.

Drei Phasen-Betrieb

PowerControl – Optimierung der Stromversorgung bei schwachem Landstrom

PowerAssist – Erweiterte Nutzungs-Möglichkeiten von Generator und Landanschluss: die "Unterstützungs"-Funktion des Quattro

Der Quattro wird parallel zu Landstrom und Bordgenerator betrieben. Ein Stromausfall wird automatisch kompensiert: der Quattro nimmt fehlenden Strom aus der Batterie! Bei Stromüberschuss wird die Batterie geladen.

Dieses einzigartige Leistungsmerkmal löst endlich und endgültig das Problem „Landanschluss“: Elektrische Werkzeuge, Geschirrspüler, Waschmaschine, Kochen mit Strom, all das geht jetzt mit 16 A Landstrom oder sogar mit weniger. Außerdem kann der Generator jetzt kleiner ausgelegt werden.

Drei programmierbare Relais

Der Quattro verfügt über drei programmierbare Relais. Die Relais können jedoch für zahlreiche andere Funktionen wie z. B. als Generator-Startrelais umprogrammiert werden.

Zwei programmierbare analoge/digitale Eingangs-/Ausgangs-Ports

Frequenzverschiebung

Eingebauter Batterie-Monitor (optional)

Die ideale Lösung für Multis oder Quattros, die Teil eines Hybrid-Systems bilden (Diesel-Generator, Wechselrichter/Ladegeräte, Akkus und alternative Energie). Der eingebaute Batterie-Monitor kann so eingestellt werden, dass er den Generator ein- und ausschaltet.

- Einschalten bei einem vorgegebenen Prozentsatz des Entladungsgrades, und/oder
- Einschalten (mit einer vorgegebenen Verzögerung) bei einem vorgegebenen Batteriespannung, und/oder
- Einschalten (mit einer vorgegebenen Verzögerung) bei einem vorgegebenen Lastgrad.

- Ausschalten bei einer vorgegeben Batteriespannung, oder
- Ausschalten (mit einer vorgegebenen Verzögerung) nachdem die Konstantstromphase abgeschlossen wurde, und/oder
- Ausschalten (mit einer vorgegebenen Verzögerung) bei einem vorgegebenen Lastgrad.
Solarenergie
Der Quattro ist auch bei Nutzung von Solarenergie sehr wertvoll. Dies gilt sowohl für autonome als auch für Netz unterstützten Systeme.

Notstrom oder Unabhängigkeit bei Ausfall des Stromnetzes
Häuser und auch größere Gebäude mit Solarmodulen oder kleinen kombinierten Kraft-Wärme Anlagen oder andere nachhaltigen Energiequellen erzeugen oft genügend Energie, um zusätzlich wichtige Geräte zu versorgen bei einem Netzausfall zu versorgen (Heizungs-Umlauf-Pumpen, Kühlbehälter, Tiefkühltruhe, Internet PC etc.). Leider fallen die netzgekoppelten Solarmodule und/oder kleinen Kraft-Wärme-Anlagen ebenfalls aus, sobald das Stromnetz versagt. Mit einem Quattro und einigen Batterien kann dieses Problem auf einfache Art und Weise gelöst werden: Der Quattro kann bei Netzausfall Ersatzstrom bereitstellen. Wenn die erneuerbaren Quellen im Normalbetrieb überschüssigen Strom produzieren, kann der Quattro diesen in den Batterien speichern, um dann bei einer Störung das System damit zu unterstützen.

Programmierung mit DIP-Schaltern, dem VE.Net Paneel oder dem PC
Der Quattro wird einsatzbereit geliefert. Im Bedarfsfall gibt es drei Möglichkeiten für Einstellungsänderungen:
- Die wichtigsten Änderungen (einschließlich Parallelbetrieb von bis zu drei Einheiten sowie Dreiphasenbetrieb) können sehr einfach mit den DIP-Schaltern am Quattro vorgenommen werden.
- Alle Einstellungen mit Ausnahme des Multifunktionsrelais können auch mit dem VE.Net Paneel verändert werden.
- Alle Einstellungen können auch am PC mit der kostenlosen Konfigurations-Software gemacht werden. (Software kostenlos über www.victronenergy.com).

2.2 Batterieladegerät
Adaptive 4-stufige Ladekennlinie: "Bulk" (Konstantstromphase) - "Absorption" (Konstantspannungsphase) - "Float" (Ladeerhaltungsspannungsphase)- "Storage" (Lagermodus)
Das durch Mikroprozessoren gesteuerte Batterieladungssystem kann den unterschiedlichen Batteriebauarten angepasst werden. Der Ladeprozess wird über eine adaptive Steuerung der Batterienutzung angepasst.

Die richtige Lademenge: variable Konstantspannungsphase
Bei nur geringen Entladungen wird die Konstantspannungzeit reduziert, um eventuellen Überladung und damit verbundener stärkerer Gasentwicklung vorzubeugen. Andererseits wird nach einer Tiefentladung die Konstantspannungsphase automatisch so verlängert, dass wieder eine Vollladung erreicht wird.

Verhinderung von Schäden durch übermäßige Gasung: Der BatterySafe-Modus
Um die Ladezeit zu verkürzen, wird ein möglichst hoher Ladestrom in Verbindung mit einer hohen Konstantspannung angestrebt. Damit aber eine übermäßige Gasentwicklung gegen Ende der Konstantstromphase vermieden wird, wird die Geschwindigkeit des Spannungsanstiegs begrenzt, sobald die Gasungsspannung erreicht wird.

 Weniger Wartung und Alterung im Ruhezustand der Batterie: der Lagerungs-Modus
Der Lagermodus wird immer dann aktiviert, wenn innerhalb von 24 Stunden keine Entladung erfolgt ist. Im Lagerungsmodus wird die Ladeerhaltungsspannung dann auf 2,2 V/Zelle (13,2 V für eine 12 V-Batterie) gesenkt, um Gasentwicklung und eine Korrosion an den positiven Platten zu minimieren. Einmal pro Woche wird die Spannung auf den Level der Gasungsspannung erhöht. Dadurch wird eine Art Ausgleichsladung erzielt, die die Elektrolytschichtung und die Sulfatierung - die beiden Hauptgründe für vorzeitigen Batterieausfall - verhindert.

Zwei Gleichstromausgänge zum Laden von zwei Batterien
Der Haupt-Gleichstromanschluss kann die Versorgung des kompletten Ausgangsstroms übernehmen. Der zweite Ausgang - z.B. zur Ladung der Starterbatterie - ist auf 4 A und eine geringfügig niedrigere Ausgangsspannung eingestellt.

Verlängerung der Lebensdauer der Batterie: Temperaturkompensation

Batteriespannungsfühler: die richtige Ladespannung
Ein Spannungsverlust aufgrund des Kabelwiderstands lässt sich durch die Verwendung der Spannungssensor-Vorrichtung kompensieren. Damit wird die Spannung direkt am DC Bus oder an den Batterieanschlüssen gemessen.

Mehr zu Batterien und deren Ladung
2.3 Eigenverbrauch – Speichersysteme für Solarenergie
Weitere Informationen erhalten Sie in unserer Informationsbroschüre: Self Consumption or Grid Independence with the Victron Energy Storage Hub (Eigenverbrauch oder Netzunabhängigkeit mit dem Speicherhub von Victron).
Die entsprechende Software kann auf unserer Website heruntergeladen werden.

Wenn der Multi/Quattro in einer Konfiguration verwendet wird, die Energie zurück in das Netz einspeist, ist es notwendig, für die Einhaltung der Anschlussbedingungen zu sorgen. Dies erfolgt durch die Auswahl der entsprechenden Anschlussbedingungen bei den Ländereinstellungen mithilfe des VEConfigure Tools.
Auf diese Weise kann der Multi/Quattro die örtlichen Vorschriften einhalten.
Nachdem die entsprechenden Anschlussbedingungen festgelegt wurden, können diese bzw. einzelne ihrer Parameter nur noch mithilfe eines Passwortes deaktiviert oder verändert werden.

Werden die örtlichen Anschlussbedingungen vom Multi/Quattro nicht unterstützt, sollte ein externes zertifiziertes Interfacegerät verwendet werden, um den Multi/Quattro an das Stromnetz anzuschließen.

3. BETRIEB

3.1 “On / stand by / charger only” Schalter

Nach dem Einschalten (Schalter “on”) ist das Gerät betriebsbereit. Der Wechselrichter arbeitet und die LED-Anzeige „inverter on“ leuchtet auf.

Spannung, die am *AC-in*-Anschluss, dem Wechselstromanschluss anliegt, wird zunächst überprüft und, wenn innerhalb der Spezifikation befinden, zum "AC-out"-Anschluss, dem Wechselstromverbraucheranschluss durchgeschaltet. Der Wechselrichter wird ausgeschaltet, die LED-Anzeige „mains on“ leuchtet und das Ladegerät nimmt den Betrieb auf. Je nach momentan zutreffendem Lademodus leuchtet die LED-Anzeige während der Konstantstrom-("bulk")Phase, der Konstantspannungs-("absorption")Phase oder in der Ladeerhaltungs-("float")Phase. Wenn die Netzspannung am "AC-in" Anschluss als zu hoch oder zu tief befunden wird, schaltet sich der Wechselrichter ein.

Wenn der Frontschalter auf "charger only" (nur Ladegerät) gestellt wird, schaltet sich nur das Ladegerät des Quattro ein (sofern Netzspannung vorhanden ist). In diesem Modus wird die Eingangsspannung zum Wechselstromverbraucherausgang "AC out" durchgeschaltet.

HINWEIS: Wenn Sie das Gerät nur zum Laden nutzen, sollten Sie darauf achten, dass der Schalter immer in der Position "charger only" steht. Das verhindert, dass sich im Falle eines Stromausfalls der Wechselrichter einschaltet und Ihre Batterien entladen.

3.2 Fernbedienung

3.3 Ausgleichsladung und erzwungene Konstantspannung

3.3.1 Ausgleichsladung

Während einer Ausgleichsladung wird eine höhere Ladespannung abgegeben als die meisten Gleichstromverbraucher vertragen können. Sie müssen daher erst abgeschaltet werden, bevor mit der Ausgleichsladung begonnen wird.

3.3.2 Erzwungene Konstantspannung

3.3.3 Aktivierung von Ausgleichsladung und erzwungener Konstantspannungsphase

Der Quattro kann sowohl über die Fernbedienung als auch mit dem Frontschalter am Gehäuse in diese Betriebsarten geschaltet werden. Voraussetzung ist, dass das alle Schalter auf "on" stehen und kein Schalter auf "charger only" eingestellt ist.

Wenn der Quattro in dieser Betriebsart arbeiten soll, ist die nachstehende Anweisung zu befolgen.

Falls der Schalter innerhalb der geforderten Zeit nicht in der gewünschten Position ist, kann er noch einmal schnell umgeschaltet werden. Dies hat dann keinen Einfluss auf den Ladezustand.

HINWEIS: Das unten beschriebene Umschalten von "on" auf "charger only" und zurück muss schnell geschehen. Dabei muss der Schalter so umgelegt werden, dass die mittlere Stellung "übersprungen" wird. Wenn der betreffende Schalter auch nur kurz in Stellung "off" steht, kann sich das Gerät ausschalten. In diesem Fall müssen Sie wieder bei Schritt 1 beginnen. Eine gewisse Eingewöhnung ist erforderlich insbesondere dann, wenn der Gehäus-Frontschalter am Compact benutzt wird. Die entsprechende Bedienung mit dem Fernbedienpaneel ist einfacher.

Einstellung:

Achten Sie darauf, dass alle Schalter (also Frontschalter, Fernbedienungsschalter oder Remote Control-Schalter, sofern vorhanden) auf "on" stehen.

Die Ausgleichsladung oder die erzwungene Konstantspannungsphase sind nur dann sinnvoll, wenn die vorausgegangene Normalladung vollständig abgeschlossen wurde (die "float" Anzeige ist aktiv).

Zur Aktivierung:

a. den Schalter zügig von "on" auf "charger only" umstellen. Den Schalter ½ bis 2 Sekunden lang in dieser Stellung belassen.

b. den Schalter zügig von "charger only" zurück auf "on" schalten und ihn dann ½ bis 2 Sekunden lang in dieser Stellung belassen.

c. den Schalter noch einmal zügig von "on" auf "charger only“ umstellen und ihn dann in dieser Stellung belassen.

Am Quattro (und, bei Anschluss an das MultiControl Paneel) blinken die drei LEDs “Bulk”, “Absorption” und “float” jetzt fünfmal. Danach leuchten die LED-Anzeige “Bulk”, “Absorption” und “float” jeweils 2 Sekunden lang.

a. Wenn der Schalter auf "on" gestellt wird, während die LED-Anzeige “Bulk” leuchtet, wird das Ladegerät in den Ausgleichsladungs-Modus geschaltet.

b. Wenn der Schalter auf "on" gestellt wird, während die LED-Anzeige "Absorption" leuchtet, wird das Ladegerät in den Modus "erzwungene Konstantspannungsphase" geschaltet.

c. Wenn der Schalter auf "on" gestellt wird, nachdem die drei LED Sequenz abgeschlossen ist, schaltet sich das Ladegerät in den Modus "float" (Erhaltungsspannung).

d. Wird der Schalter nicht bewegt, verbleibt der Quattro im Modus "charger only" (nur Ladegerät) und schaltet auf "float" (Erhaltungsspannung).
3.4 LED Anzeigen und deren Bedeutung

- LED aus
- LED blinkt
- LED brennt

<table>
<thead>
<tr>
<th>Wechselrichter</th>
<th>Ladegerät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wechselrichter</td>
<td>Ladegerät</td>
</tr>
<tr>
<td>LED aus</td>
<td>mains on</td>
</tr>
<tr>
<td>LED blinkt</td>
<td>off</td>
</tr>
<tr>
<td>LED brennt</td>
<td>charger only</td>
</tr>
</tbody>
</table>

LED aus
Der Wechselrichter ist in Betrieb und Strom fließt zu den Verbrauchern.

LED blinkt

LED brennt
Der Wechselrichter ist wegen Überlast oder Kurzschluss abgeschaltet.

Batterie ist fast leer.
Die Batterie ist fast leer.

Gerätetemperatur hat einen kritischen Wert erreicht.
Die Gerätetemperatur hat einen kritischen Wert erreicht.
Der Wechselrichter ist wegen zu hoher Betriebstemperatur abgeschaltet.

- Abwechselndes Blinken der LEDs weist auf fast leere Batterien und auf gleichzeitige Überlast hin.
- Wenn "overload" und "low battery" gleichzeitig blinken, liegt eine zu hohe Brummspannung am Batterieanschluss vor.

Der Wechselrichter ist wegen zu hoher Brummspannung am Batterieanschluss ausgeschaltet.
Ladegerät

<table>
<thead>
<tr>
<th>Ladegerät</th>
<th>Wechselrichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>● bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>○ absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

Die Wechselspannung an Eingang AC-in-1 oder AC-in-2 ist durchgeschaltet und das Ladegerät befindet sich im Konstantstrommodus ("bulk").

Ladegerät

<table>
<thead>
<tr>
<th>Ladegerät</th>
<th>Wechselrichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>● bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>● absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

Ladegerät

<table>
<thead>
<tr>
<th>Ladegerät</th>
<th>Wechselrichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>● bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>● absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

Die Wechselspannung an Eingang AC-in-1 oder AC-in-2 ist durchgeschaltet und das Ladegerät befindet sich im Konstantspannungsmodus ("absorption").

Ladegerät

<table>
<thead>
<tr>
<th>Ladegerät</th>
<th>Wechselrichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>● bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>● absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

Die Wechselspannung an Eingang AC-in-1 oder AC-in-2 ist durchgeschaltet und das Ladegerät befindet sich im Erhaltungsspannungs- oder Lagermodus ("float" bzw. "storage").

Ladegerät

<table>
<thead>
<tr>
<th>Ladegerät</th>
<th>Wechselrichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>● bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>● absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

Die Wechselspannung an Eingang AC-in-1 oder AC-in-2 ist durchgeschaltet und das Ladegerät befindet sich im Ausgleichsmodus ("equalisation").
Spezielle Anzeigen

Mit begrenzter Eingangsstrom eingestellt.

<table>
<thead>
<tr>
<th>Ladegerät</th>
<th>Wechselrichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>☀ mains on</td>
<td>☀ inverter on</td>
</tr>
<tr>
<td>☐ bulk</td>
<td>☐ overload</td>
</tr>
<tr>
<td>☐ absorption</td>
<td>☐ low battery</td>
</tr>
<tr>
<td>☐ float</td>
<td>☐ charger only</td>
</tr>
<tr>
<td></td>
<td>☐ temperature</td>
</tr>
</tbody>
</table>

Zulieferfunktion aktiviert

<table>
<thead>
<tr>
<th>Ladegerät</th>
<th>Wechselrichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>☀ mains on</td>
<td>☀ inverter on</td>
</tr>
<tr>
<td>☐ bulk</td>
<td>☐ overload</td>
</tr>
<tr>
<td>☐ absorption</td>
<td>☐ low battery</td>
</tr>
<tr>
<td>☐ float</td>
<td>☐ charger only</td>
</tr>
<tr>
<td></td>
<td>☐ temperature</td>
</tr>
</tbody>
</table>

4. EINBAU

Dieses Produkt darf nur durch qualifiziertes Fachpersonal eingebaut werden.

4.1 Einbauort

Das Gerät soll an einem trockenen und gut belüfteten Platz möglichst nahe zur Batterie installiert werden. Ein Abstand von ca. 10 cm sollte aus Kühlungsgründen um das Gerät herum frei bleiben.

Übermäßig hohe Umgebungstemperatur führt zu:
- kürzerer Lebensdauer des Geräts
- niedrigerem Ladestrom
- reduzierter Spitzenkapazität oder Abschaltung des Gerätes.

Das Gerät darf auf keinen Fall direkt über den Batterien eingebaut werden.

Nach dem Einbau muss das Gerät innen zugänglich bleiben.

Der Abstand zwischen dem Gerät und der Batterie sollte so gering wie möglich sein, um Kabelverluste zu minimieren.

Installieren Sie das Gerät in brandsicherer Umgebung. Stellen Sie sicher, dass keine brennbaren Chemikalien, Plastikteile, Vorhänge oder andere Textilien in unmittelbarer Nähe sind.

Der Quattro hat keine interne Gleichstrom-Sicherung. Eine äußere Sicherung ist vorzusehen.

4.2 Anschluss der Batterie-Kabel

Zur vollen Leistungs-Nutzung des Gerätes müssen Batterien ausreichender Kapazität sowie Batteriekabel mit entsprechendem Querschnitt vorgesehen werden.

Siehe Tabelle:

<table>
<thead>
<tr>
<th>Empfohlene Batteriekapazität (Ah)</th>
<th>12/3000/120</th>
<th>24/3000/70</th>
<th>48/3000/35</th>
</tr>
</thead>
<tbody>
<tr>
<td>400–1200</td>
<td>200–700</td>
<td>100–400</td>
<td></td>
</tr>
<tr>
<td>Empfohlene DC-Sicherung</td>
<td>400A</td>
<td>300A</td>
<td>125A</td>
</tr>
<tr>
<td>Empfohlene Klemmenquerschnitte (mm²) für + und - Anschluss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 5 m*</td>
<td>2x 50 mm²</td>
<td>50 mm²</td>
<td>35 mm²</td>
</tr>
<tr>
<td>5 – 10 m*</td>
<td>2x 70 mm²</td>
<td>2x 50 mm²</td>
<td>2x 35 mm²</td>
</tr>
</tbody>
</table>

* ‘2x’ bedeutet zwei Positiv- und zwei Negativ-Kabel.

Vorgehensweise

Bezüglich der Kabelanschlüsse gehen Sie bitte wie folgt vor:

Benutzen Sie zur Vermeidung von Kurzschlüssen einen isolierten Drehmomentschlüssel!

Maximales Drehmoment: 9 Nm

Vermeiden Sie Kabelkurzschlüsse! Benutzen Sie zur Vermeidung von Kurzschlüssen isolierte Maulschlüssel!

- Lösen Sie die vier Befestigungsschrauben der unteren Frontplatte des Gehäuses und entfernen Sie diese untere Frontplatte.
- Schließen Sie die Batteriekabel an: + (rot) rechts und - (schwarz) links (siehe auch Anhang A).
- Ziehen Sie die Befestigungen an, nachdem Sie das mitgelieferte Befestigungsmaterial eingebaut haben.
4.3 Anschluss der Wechselstromkabel

Dieses Produkt entspricht der Sicherheitsklasse I (mit Sicherungserdung). Eine unterbrechungsfreie Schutzerdung muss an den Klemmen des Wechselstromeingangs- und/oder Ausgangs und/oder dem Erdungspunkt am Gehäuse angebracht werden. Beachten Sie die folgenden Hinweise:

In einer ortsfesten Installation (Netzanschluss über ein Landanschlusskabel) geht die Erdung verloren, wenn das Landanschlusskabel nicht eingesteckt ist. Hier muss das Gehäuse mit dem Fahrzeugchassis oder dem Bootsbumpf leitend verbunden werden.

Bei Schiffen ist die zuvor beschriebene Verbindung jedoch nicht empfohlen, da sie zu galvanischer Korrosion führen kann. Mit einem Trenntransformator kann das vermieden werden.

Der Umrichter ist mit einem Netzfrequenz-Trenntransformator ausgestattet. Dadurch wird die Möglichkeit eines Gleichstroms an jedem AC-Anschluss ausgeschlossen. Daher können RCD’s vom Typ A verwendet werden.

AC-in-1 (siehe Anhang A)
Wenn an diesem Anschluss Wechselspannung anliegt, wird der Quattro diese annehmen. Normalerweise soll hier der Generator angeschlossen werden.

Der Eingang AC-in-1 muss durch eine Sicherung oder einen magnetischen Schutzschalter, der mit 50A oder weniger bemessen ist, geschützt werden. Der Kabeldurchmesser muss entsprechend bemessen sein. Wenn die Eingangswechselstromversorgung kleiner bemessen ist, so muss die Sicherung bzw. der Schutzschalter auch entsprechend kleiner bemessen sein.

AC-in-2 (siehe Anhang A)

Der Eingang AC-in-2 muss durch eine Sicherung oder einen magnetischen Schutzschalter, der mit 50A oder weniger bemessen ist, geschützt werden. Der Kabeldurchmesser muss entsprechend bemessen sein. Wenn die Eingangswechselstromversorgung kleiner bemessen ist, so muss die Sicherung bzw. der Schutzschalter auch entsprechend kleiner bemessen sein.

Hinweis: Der Quattro startet möglicherweise nicht, wenn Wechselstrom nur an AC-in-2 vorhanden ist und die Gleichstrom-Batteriespannung 10 % oder noch mehr unter dem Nennwert liegt (bei weniger als 11 Volt im Falle einer 12 Volt-Batterie).
Lösung: Schließen Sie Wechselstrom an AC-in-1 an oder laden Sie die Batterie auf.

AC-out-1 (siehe Anhang A)
Das Wechselstrom-Ausgangskabel kann direkt am vorgesehenen Anschlussblock „AC-out“ angeschlossen werden.
Mit seiner PowerAssist-Funktion kann der Quattro bis zu 3 kVA (das heißt 3000 / 230 = 13A) in Zeiten starker Spitzenstromanforderungen zum Ausgang beitragen. Zusammen mit einem maximalen Eingangsstrom von 50A bedeutet das, dass der Ausgang bis zu 50 + 13 = 63A liefern kann.
Ein Fehlerstromschalter und eine Sicherung oder ein Schutzschalter, die so bemessen sind, dass sie die erwartete Last aushalten können, müssen mit dem Ausgang in Reihe geschaltet werden. Der Kabeldurchmesser muss entsprechend angepasst sein. Die maximale Nennleistung der Sicherung bzw. des Schutzschalters ist 63A.

AC-out-2 (siehe Anhang A)

Vorgehensweise
Verwenden Sie dreiadriges Kabel. Die Anschlussklemmen sind eindeutig gekennzeichnet:
PE: Erdung
N: Nullleiter
L: Phase/stromführender Leiter
4.4 Anschlussoptionen

4.4.1 Starterbatterie (Anschlussklemme E, siehe Anhang A)
Der Quattro hat einen Anschluss zum Laden einer Starterbatterie. Der Ausgangsstrom ist auf 4A begrenzt.

4.4.2 Spannungsfühler (Voltage sense) (Anschlussklemme E, Anhang A)
Zur Kompensation möglicher Kabelverluste während des Ladens können zwei entsprechende Messfühlerverbindungen zur Spannungsmessung direkt an den Batteriepolen angeschlossen werden. Der Querschnitt sollte 0,75 mm² betragen.

Während des Ladens kompensiert der Quattro den Spannungsabfall über die DC-Kabel maximal bis zu 1 Volt (d. h. 1 V über dem Plusanschluss und 1 V über dem Minusanschluss). Falls der Spannungsabfall größer als 1V zu werden droht, wird der Ladestrom soweit zurückgenommen, dass ein Abfall von mehr als 1V vermieden wird.

4.4.3 Temperatursensor (Anschlussklemme E, Anhang A)
Für die Temperatur-Kompensation beim Laden muss der mitgelieferte Temperaturfühler angeschlossen werden. Der Sensor ist isoliert und muss am Minuspol der Batterie angeschlossen werden.

4.4.4 Fernbedienung
Die Fernbedienung des Quattro ist auf zweierlei Art möglich:
Mit einem außen angebrachten Schalter (Schalteranschluss H, beachten Sie hierzu Anhang A). Der Quattro-Hauptschalter muss auf "on" stehen.
Mit einem Multi Control-Paneel (Anschluss an einem der beiden RJ48 Kontakte B, siehe Anhang A). Der Quattro-Hauptschalter muss auf "on" stehen.
Die Strombegrenzung von AC-in-1 kann mit DIP Schaltern oder mit entsprechender Software eingestellt werden.

Es kann nur eine Fernbedienung angeschlossen werden, d. h. entweder ein Schalter oder ein Multi Control-Paneel.

4.4.5. Programmierbares Relais
Der Quattro ist mit einem Multifunktionsrelais ausgestattet, das in der Grundfunktion als Alarmrelais dient. Dieses Relais kann jedoch auch für zahlreiche andere Funktionen wie z. B. zum Starten eines Generators (VEConfigure-Software erforderlich) umprogrammiert werden.

4.4.6 Zusätzlicher Wechselstromausgang (AC-out-2)

4.4.7 Parallel-Schaltung von Quattro-Geräten (siehe Anhang C)
Bei Parallelschaltung ist Folgendes zu beachten:
- Maximal sechs Geräte können parallel arbeiten.
- Es können nur gleiche Geräte mit identischen Leistungsdaten parallel geschaltet werden.
- Ausreichende Batteriekapazität muss gegeben sein.
- Die Gleichstrom-Anschlusskabel zu den Geräten müssen gleich lang und von gleichem Querschnitt sein.
- Bauen Sie die Quattro so nahe wie möglich zueinander ein, lassen Sie aber mindestens 10 cm Belüftungsraum neben, über und unter den Geräten frei.
Verbindungs-/Splitter-Dosen sind nicht zulässig.
- Im System muss lediglich ein Batterie-Temperatursensor eingebaut werden. Falls die Temperatur mehrerer Batterien erfasst werden soll, können Sie auch die Sensoren anderer Quattro im System anschließen (max. 1 Sensor je Quattro). Die Temperaturkompensation während der Ladung richtet sich nach dem Sensor, der die höchste Temperatur anzeigt.
- Der Spannungssensor muss beim "Master"-Gerät angeschlossen werden (siehe auch Absatz 5.5.1.4).
- Es darf nur eine Fernbedienung (Paneel oder Schalter) im System vorhanden sein.

4.4.8 Dreiphasen-Schaltung (Siehe Anhang C)
Voraussetzungen gemäß Abschnitt 4.4.7
Hinweis: Der Quattro eignet sich nicht für eine Drei-Phasen-Delta (Δ)-Konfiguration.
5. Konfiguration

- Veränderungen von Einstellungen sollen nur durch qualifizierte Fachkräfte vorgenommen werden.
- Lesen Sie vor Einstellungssänderungen sorgfältig die Anweisungen.
- Während der Einstellarbeiten müssen die Gleichstromsicherungen in den Batterieleitungen entfernt werden.

5.1 Standardeinstellung: betriebsbereit

Achtung: Möglicherweise stimmt die Standard-Ladespannung nicht mit der Ihrer Batterien überein! Lesen Sie deshalb sorgfältig die Batteriedokumentation und fragen Sie diesbezüglich Ihren Lieferanten.

Quattro Standard-Werkseinstellungen

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wechselrichterfrequenz</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Eingangsfrequenzbereich</td>
<td>45 - 65 Hz</td>
</tr>
<tr>
<td>Eingangsspannungsbereich</td>
<td>180-265 VAC</td>
</tr>
<tr>
<td>Wechselrichterspannung</td>
<td>230 VAC</td>
</tr>
<tr>
<td>Einzelbetrieb / Parallelbetrieb / 3-Phasenbetrieb</td>
<td>Einzelbetrieb</td>
</tr>
<tr>
<td>AES (Automatic Economy Switch)</td>
<td>aus</td>
</tr>
<tr>
<td>Erdungsrelais</td>
<td>ein</td>
</tr>
<tr>
<td>Ladegerät ein/aus</td>
<td>ein</td>
</tr>
<tr>
<td>Ladekennlinie</td>
<td>viertstufig, adaptiv mit BatterySafe-Modus</td>
</tr>
<tr>
<td>Ladestrom</td>
<td>75 % vom Maximal-Ladestrom</td>
</tr>
<tr>
<td>Batterietyp</td>
<td>Victron Gel Tiefentladbar (Victron AGM Tiefentladbar ebenfalls geeignet)</td>
</tr>
<tr>
<td>Automatiche Ausgleichsladung</td>
<td>aus</td>
</tr>
<tr>
<td>Konstantspannung</td>
<td>14,4/28,8/57,6 V</td>
</tr>
<tr>
<td>Konstantspannungsduer</td>
<td>bis 8 Std. (abhängig von der Konstantstromduer)</td>
</tr>
<tr>
<td>Ladeerhaltungsspannung</td>
<td>13,8/27,6/55,2 V</td>
</tr>
<tr>
<td>Lagerspannung</td>
<td>13,2 V (nicht regulierbar)</td>
</tr>
<tr>
<td>Wiederholte Konstantspannungsduer</td>
<td>1 h.</td>
</tr>
<tr>
<td>Wiederholungsintervall Konstantspannungsphase</td>
<td>7 Tage</td>
</tr>
<tr>
<td>Konstantstrom-Sicherung</td>
<td>ein</td>
</tr>
<tr>
<td>Generator (AC-in-1) / Landstrom (AC-in-2)</td>
<td>50 A/16A (= regulierbare Strombegrenzung für PowerControl- und PowerAssist-Funktionen)</td>
</tr>
<tr>
<td>UPS Funktion</td>
<td>ein</td>
</tr>
<tr>
<td>Dynamische Strombegrenzung</td>
<td>aus</td>
</tr>
<tr>
<td>WeakAC</td>
<td>aus</td>
</tr>
<tr>
<td>BoostFactor</td>
<td>2</td>
</tr>
<tr>
<td>Programmierbares Relais</td>
<td>Alarmfunktion</td>
</tr>
<tr>
<td>PowerAssist</td>
<td>ein</td>
</tr>
</tbody>
</table>

5.2 Erläuterungen zu den Einstellungen

Nicht selbsterklärende Einstellungen werden nachstehend kurz erklärt. Weitere Informationen finden Sie in den Konfigurationsprogrammen (siehe auch Abschnitt 5.3)

Wechselrichter-Frequenz
Ausgangsfrequenz, wenn kein Wechselstrom am Eingang anliegt.
Einstellbar: 50Hz; 60Hz

Eingangsfrequenzbereich
Einstellbar: 45 – 65 Hz; 45 – 55 Hz; 55 – 65 Hz.

Eingangsspannungsbereich
Einstellbar:
Einstellbarer Werte Untergrenze: 180 / 230V
Einstellbare Werte Obergrenze: 230 / 270V

Die Lösung hierfür besteht in der Anhebung der Einstellung der Untergrenze auf 210 VAC (der Ausgang von AVR Generatoren ist im Allgemeinen sehr stabil). Kann aber auch den/die Multi(s) vom Generator trennen, wenn ein Signal zum Anhalten des Generators gegeben wird (mithilfe eines in Serie an den Generator angeschlossenen Wechselstromschützes).

Wechselrichter-Spannung
Quattro Ausgangsspannung bei Batteriebetrieb: Einstellbar: 210 – 245V

Einzelbetrieb / Parallelbetrieb / 2 oder 3-Phasenbetrieb
Mit mehreren Einzelgeräten kann:
- die Gesamtwechselrichter-Leistung erhöht werden (mehrere Gräte in Parallelschaltung)
- ein Spaltphasensystem (nur bei Quattro-Geräten mit 120 V Ausgangsspannung) aufgebaut werden.
- ein Drei-Phasen-System konfiguriert werden.

AES (Automatic Economy Switch)

Such-Modus
Anstelle des AES-Modus kann auch der Such-Modus ausgewählt werden (nur mithilfe von VEConfigure).
Steht der Such-Modus auf "on", wird der Stromverbrauch bei Nullastbetrieb um ungefähr 70 % reduziert. In diesem Modus schaltet sich der Quattro, wenn er im Wechselrichter-Modus betrieben wird, bei Nullast bzw. bei nur geringer Last ab und schaltet sich alle zwei Stunden für einen kurzen Zeitraum wieder ein. Überschreitet der Ausgangsstrom einen eingestellten Grenzwert, nimmt der Wechselrichter den Betrieb wieder auf. Ist dies nicht der Fall, schaltet sich der Wechselrichter wieder ab. Die Last-Schwellwerte für "shut down" (abschalten) und "remain on" (eingeschaltet bleiben) lassen sich für den Such-Modus mit VEConfigure einstellen.
Die Standard-Einstellungen sind:
| Abschalten: 40 Watt (lineare Last) |
| Einschalten: 100 Watt (lineare Last) |

Die Einstellung kann nicht über DIP-Schalter vorgenommen werden. Diese Einstellung ist nur im Einzelgerät-Betrieb möglich.

Erdungsrelais (siehe Anhang B)
Mit Relais (H) wird der Nullleiter des Wechselstromeingangs am Gehäuse geerdet, wenn die Rückleitungs-Sicherheitsrelais an den AC-in-1 und AC-in-2 Eingängen geöffnet sind. Hierdurch wird die korrekte Funktion der Erdschluss sicherungen an den Ausgängen gewährleistet.
Die vorgenannte Funktion muss beim Wechselrichterbetrieb abgeschaltet werden, wenn ein ungeeigneter Ausgang benötigt wird. (Siehe auch Abschnitt 4.5) Nicht mit DIP-Schaltern einstellbar.
Sofern erforderlich kann ein externes Erdungsrelais angeschlossen werden (bei Spaltphasensystemen mit einem separaten Spartransformator). Siehe Anhang A.

Batterieladekurve
Die Grundeinstellung ist die 4-stufige adaptive Ladung im „BatterySafe“-Modus. (Beschreibung in Abschnitt 2). Dies ist die beste Ladecharakteristik. In den "Hilfe"- Dateien der Konfigurationssoftware werden auch andere Möglichkeiten erwähnt.
Die Grundeinstellung kann über die DIP-Schalter angewählt werden.

Batterietyp
Mit VEConfigure lässt sich die Ladekurve an jeden Batterietyp anpassen (Nickel-Kadmium-Batterien, Lithium-Ionen-Batterien).

Automatische Ausgleichsladung
Die Einstellung kann nicht über DIP-Schalter vorgenommen werden. Bitte beachten Sie auch "Röhrenplatten-Traktions-Batterie-Ladekurve" bei VEConfigure.
Konstantspannungsdauer

Lagerspannung, wiederholte Konstantspannungsladung, Wiederholte Konstantspannungsintervalle
Siehe Abschnitt 2. Die Einstellung kann nicht über DIP-Schalter vorgenommen werden.

Konstantstrom-Sicherung
Bei dieser Einstellung (Schalterstellung "on") wird die Konstantstromphase auf max. 10 Stunden begrenzt. Falls eine längere Zeit erforderlich erscheint, deutet das auf einen Batteriefehler hin (z.B. Zellenkurzschluss). Die Einstellung kann nicht über DIP-Schalter vorgenommen werden.

AC-Eingangsstrombegrenzung AC-in-1 (Generator) / AC-in-2 (Land-/Netzstromversorgung)
Hier handelt es sich um die Strombegrenzungseinstellungen bei Generatoren und Dynamischen Strombegrenzung

Schwache Wechselstromquelle: "WeakAC"

BoostFactor
Diese Einstellung darf nur nach Rücksprache mit Victron Energy oder einem bei Victron geschulten Spezialisten verwendet werden.

Drei programmierbare Relais

Frequenzverschiebung
Eingebauter Batterie-Monitor (optional)
Die ideale Lösung für Multis oder Quattros, die Teil eines Hybrid-Systems bilden (Diesel-Generator, Wechselrichter/Ladegeräte, Akkus und alternative Energie). Der eingebaute Batterie-Monitor kann so eingestellt werden, dass er den Generator ein- und ausschaltet:
- Einschalten bei einem vorgegebenen Prozentsatz des Entladungsgrades, und/oder
- Einschalten (mit einer vorgegebenen Verzögerung) bei einer vorgegebenen Batteriespannung, und/oder
- Einschalten (mit einer vorgegebenen Verzögerung) bei einem vorgegebenen Lastgrad.
- Ausschalten bei einer vorgegebenen Batteriespannung, oder
- Ausschalten (mit einer vorgegebenen Verzögerung) nachdem die Konstantstromphase abgeschlossen wurde, und/oder
- Ausschalten (mit einer vorgegebenen Verzögerung) bei einem vorgegebenen Lastgrad.
Die Einstellung kann nicht über DIP-Schalter vorgenommen werden.

Zusätzlicher Wechselstromausgang (AC-out-2)
5.3 Konfiguration mit dem PC

Die Mehrzahl der Einstellungen kann mit den DIP-Schaltern vorgenommen werden (Siehe auch Abschnitt 5.5)

HINWEIS:
Dieses Handbuch ist für Produkte mit der Firmware xxxx400 oder höher gedacht (wobei x jede Zahl sein kann).
Die Firmware-Nummer befindet sich auf dem Mikroprozessor, nachdem zunächst die Frontplatte entfernt wurde.
Es ist möglich, ältere Geräte zu aktualisieren solange dieselbe siebenstellige Nummer entweder mit 26 oder 27 beginnt.
Beginnt sie jedoch mit 19 oder 20, haben Sie einen veralteten Mikroprozessor und eine Aktualisierung auf 400 oder höher ist nicht möglich.

Bei Einstellungen mit dem PC wird Folgendes benötigt:
- Ein MK3-USB (VE.Bus zu USB) Interface und ein RJ45 UTP Kabel.
 Alternativ können das Interface MK2.2b (VE.Bus zu RS232) und ein RJ45 UTP Kabel verwendet werden.

5.3.1 VE.Bus Quick Configure (Schnellkonfiguration)
VE.Bus Quick Configure Setup ist ein Softwareprogramm, mit dem ein System mit maximal 3 Quattro-Geräten (Parallel- oder Dreiphasen-Betrieb) einfach konfiguriert werden kann. VEConfigure3 ist Teil des Programms.
Die Software steht zum kostenlosen Download unter www.victronenergy.com bereit.

5.3.2 VE.Bus System-Konfiguration

5.4 Konfiguration über das VE.Net Paneel
Hierfür wird ein VE.Net Paneel und ein VE.Net zu VE.Bus Konverter benötigt.
Mit dem VE.Net sind alle Parameter mit Ausnahme des multifunktionalen Relais und des Virtuellen Schalters zugänglich.
5.5 Konfiguration mit DIP-Schaltern

Einführung
Eine Anzahl von Einstellungen kann mit DIP-Schaltern verändert werden (siehe Anhang A, Position M)

Einige der Einstellungen sind nur für das Master/Leader-Gerät relevant (d. h. sie sind für ein Slave- oder Follower-Gerät irrelevant). Wieder andere Einstellungen sind für Slave-Geräte nicht relevant, jedoch für Follower-Geräte schon.

Ein Hinweis zur verwendeten Terminologie:
Ein System, in dem mehr als ein Quattro-Gerät verwendet wird, um eine einzelne AC-Phase aufzubauen, wird Parallel-System genannt. In diesem Fall wird eines der Quattro-Geräte die gesamte Phase steuern. Dieses Gerät heißt dann Master-Gerät. Die anderen Geräte, Slave-Geräte genannt, tun das, was das Master-Gerät ihnen vorgibt.

Es ist auch möglich, mit 2 oder 3 Quattro-Geräten mehrere AC-Phasen aufzubauen (Spaltphase- oder Drei-Phasen-System). In diesem Fall wird das Quattro-Gerät in Phase L1 Leader genannt. Die Quattro-Geräte in Phase L2 (und L3 sofern zutreffend) erzeugen dieselbe AC-Frequenz, folgen jedoch L1 mit einer festen Phasenverschiebung. Diese Quattro-Geräte werden dann Follower genannt.

Allgemeines Verfahren:
Schalten Sie den Quattro ein – vorzugsweise ohne Belastung und ohne Wechselspannung an den Eingängen. Der Quattro arbeitet dann als Wechselrichter.

Schritt 1: Wählen Sie über die DIP-Schalter die Einstellungen für:
- die gewünschte Strombegrenzung am AC-Eingang. (für Slaves irrelevant)
- die Begrenzung des Ladestroms (nur für Master/Leader-Geräte relevant)

Schritt 2: weitere Einstellungen, Einstellung der DIP-Schalter für:
- Ladespannungen (nur für Master/Leader-Geräte relevant)
- Konstantspannungsdauer (nur für Master/Leader-Geräte relevant)
- Adaptive Ladekennlinie (nur für Master/Leader-Geräte relevant)
- Dynamische Strombegrenzung (für Slaves irrelevant)
- UPS-Funktion (für Slaves irrelevant)
- Konverterspannung (für Slaves irrelevant)
- Konverterfrequenz (nur für Master/Leader-Geräte relevant)

Halten Sie die Taste "Down" 2 Sekunden lang gedrückt (untere Taste rechts neben den DIP-Schaltern), um die Einstellungen zu speichern, nachdem die DIP-Schalter in die richtige Position gebracht wurden. Sie können die DIP-Schalter in den Einstellungspositionen belassen, so dass Sie jederzeit später Ihre Einstellungen nachvollziehen können.

Anmerkung:
- Die Hinweise beginnen also für Schalter Nr. 8

5.5.1 Schritt 1
5.5.1.1 Strombegrenzung am Wechselstrom-Eingang (Standard: AC-in-1: 50 A, AC-in-2: 16A)

Wenn der AC-Eingangstrom, der durch den Quattro aufgenommen wird (aufgrund der angeschlossenen Verbraucher und dem Batterieladegerät) ansteigt und kurz davor ist, die AC-Eingangsstrombegrenzung zu übersteigen, verringert der Quattro zunächst seinen Ladestrom (PowerControl) und liefert dann, sofern erforderlich) zusätzlichen Strom von der Batterie (PowerAssist). Auf diese Weise versucht der Quattro zu verhindern, dass der Eingangsstrom die eingestellte Begrenzung überschreitet.

Vorgehensweise
AC-in-1 kann mit den DIP Schaltern ds8, ds7 und ds6 eingestellt werden (Standardeinstellung: 50 A)
Vorgehensweise: Setzen Sie die DIP Schalter auf die gewünschten Werte:

<table>
<thead>
<tr>
<th>ds8</th>
<th>ds7</th>
<th>ds6</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off = 6 A (1,4 kVA bei 230 V)</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on = 10 A (2,3 kVA bei 230 V)</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off = 12 A (2,8 kVA bei 230 V)</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on = 16 A (3,7 kVA bei 230 V)</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on = 20 A (4,6 kVA bei 230 V)</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on = 25 A (5,7 kVA bei 230 V)</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on = 30 A (6,9 kVA bei 230 V)</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on = 50 A (11,5 kVA bei 230 V)</td>
</tr>
</tbody>
</table>

Anmerkung: Häufig wird die Leistung kleinerer Generatoren von den Herstellern zu optimistisch angegeben. Es ist daher zu empfehlen, dies bei der Einstellung durch Vorgabe geringerer Werte zu berücksichtigen.

AC-in-2 kann mit DIP 5 auf zwei Werte eingestellt werden (Werkseinstellung: 16A)
Vorgehensweise: Setze ds5 auf den entsprechenden Wert:

- off = 16A
- on = 30A
Über 30 A: mit der VEConfigure Software oder einem Digital Multi Control Paneel

Wichtiger Hinweis:
Wenn ein Bedienungspaneel angeschlossen ist, wird die Strombegrenzung von AC-in-2 am Paneel und nicht am Quattro selbst eingestellt.

5.5.1.2 Ladestrombegrenzung (Werkseinstellung 75 %)
Die Lebensdauer von Blei-Säure-Batterien ist dann am längsten, wenn der Ladestrom bei 10 % bis 20 % der Batteriekapazität in Ah liegt
Beispiel: der optimale Ladestrom einer Batteriebank von 24 V/500 Ah liegt bei: 50 A bis 100 A.
Der mitgelieferte Temperaturfühler sorgt für eine automatische Anpassung der Ladespannung an die Batterietemperatur.
Falls Sie schnell und damit mit höherem Strom laden wollen, beachten Sie bitte Folgendes:
- Der mitgelieferte Temperaturfühler muss auf jeden Fall angeschlossen werden. Schnell laden kann zu einer erheblichen Temperaturerhöhung in der Batteriebank führen. Der Temperaturfühler sorgt dann für eine Verringerung der Ladespannung.
- Gelegentlich wird dadurch die Konstantstromladezeit zu kurz, so dass ein besseres Ergebnis mit fest eingestellter Konstantspannungszeit erzielt werden kann. (*Feste* Konstantspannungszeit: siehe auch ds5, Schritt 2).

Vorgehensweise
Der Batterie-Ladestrom kann in vier Schritten mit den DIP-Schaltern ds4 und ds3 (Standardeinstellung: 75 %) eingestellt werden.

<table>
<thead>
<tr>
<th>ds4</th>
<th>ds3</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off = 25%</td>
</tr>
<tr>
<td>off</td>
<td>on = 50%</td>
</tr>
<tr>
<td>on = 75%</td>
<td></td>
</tr>
<tr>
<td>on = 100%</td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung: Ist die Einstellung "WeakAC" eingeschaltet, wird der maximale Ladestrom von 100 % auf ca. 80 % verringert.

5.5.1.3 Die DIP-Schalter ds2 und ds1 werden während Schritt 1 nicht verwendet.

WICHTIGER HINWEIS:
Wenn die letzten 3 Zahlen der Multi-Firmware im 100ter Bereich liegen (also die Firmware Nummer xxxx1xx lautet (wobei x jede Zahl sein kann)), dann werden ds1 & ds2 dazu verwendet, um einen Multi im Einzelbetrieb, im Parallel- oder Drei-Phasen-Betrieb einzustellen. Bitte beachten Sie das zugehörige Handbuch.
5.5.1.4 Beispiele

Einstellungsbeispiele:

Wir empfehlen, die Einstellungen zu notieren und gut aufzubewahren. Die DIP-Schalter können jetzt wieder verwendet werden, um die restlichen Einstellungen vorzunehmen (Schritt 2).

5.5.2 Schritt 2: Sonstige Einstellungen

Diese sonstigen Einstellungen sind ohne Bedeutung für die Slaves. Einige dieser Einstellungen sind auch ohne Bedeutung für die Follower (L2, L3). Diese Einstellungen werden durch den Leader L1 für das ganze System gesteuert. Falls eine Einstellung ohne Bedeutung für die Follower L2, L3 ist, wird gesondert darauf hingewiesen.

- **ds8-ds7: Einstellung der Ladespannung (irrelevant für L2, L3)**

<table>
<thead>
<tr>
<th>ds8-ds7:</th>
<th>Konstantspannung</th>
<th>Ladeerhaltungs-</th>
<th>Lager-</th>
<th>Geeignet für</th>
</tr>
</thead>
<tbody>
<tr>
<td>off off</td>
<td>14,1</td>
<td>13,8</td>
<td>13,2</td>
<td>Gel Victron Long Life (OPzV)</td>
</tr>
<tr>
<td></td>
<td>29,2</td>
<td>27,6</td>
<td>26,4</td>
<td>Gel Exide A600 (OPzV)</td>
</tr>
<tr>
<td></td>
<td>56,4</td>
<td>55,2</td>
<td>52,8</td>
<td>Gel MK Batterie</td>
</tr>
<tr>
<td>off on</td>
<td>14,4</td>
<td>13,8</td>
<td>13,2</td>
<td>Gel Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td>26,8</td>
<td>27,6</td>
<td>26,4</td>
<td>Gel Exide A200</td>
</tr>
<tr>
<td></td>
<td>57,6</td>
<td>55,2</td>
<td>52,8</td>
<td>AGM Victron Deep Discharge</td>
</tr>
<tr>
<td>on off</td>
<td>14,7</td>
<td>13,8</td>
<td>13,2</td>
<td>AGM Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td>29,4</td>
<td>27,6</td>
<td>26,4</td>
<td>Stationäre Röhrenplattenbatterie (OPzS)</td>
</tr>
<tr>
<td></td>
<td>58,8</td>
<td>55,2</td>
<td>52,8</td>
<td>AGM Victron Deep Discharge</td>
</tr>
<tr>
<td>on on</td>
<td>15,0</td>
<td>13,8</td>
<td>13,2</td>
<td>Röhrenplatten (OPzS) Batterien</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
<td>27,6</td>
<td>26,4</td>
<td>im zyklischen Betrieb</td>
</tr>
<tr>
<td></td>
<td>60,0</td>
<td>55,2</td>
<td>52,8</td>
<td></td>
</tr>
</tbody>
</table>

- **ds6: Konstantspannungszeit 8 oder 4 Stunden (irrelevant für L2, L3)**

 - on = 8 Stunden
 - off = 4 Stunden

- **ds5: adaptive Ladekennlinie (irrelevant für L2, L3)**

 - on = aktiv
 - off = inaktiv

- **ds4: dynamische Strombegrenzung**

 - on = aktiv
 - off = inaktiv

- **ds3: UPS-Funktion**

 - on = aktiv
 - off = inaktiv

- **ds2: Konverterspannung**

 - on = 230 V
 - off = 240 V

- **ds1: Konverterfrequenz (irrelevant für L2, L3)**

 - on = 50 Hz
 - off = 60 Hz

(Der breite Eingangs-Frequenzbereich (45-55 Hz) standardmäßig auf "on".)

Hinweis:
- Ist die Funktion "adäpter Laderegulator" auf on, stellt ds6 die maximale Konstantspannungszeit auf 8 oder 4 Stunden.
- Ist die Funktion "adäpter Laderegulator" auf off, wird die Konstantspannungszeit durch ds6 auf 8 oder 4 Stunden (fixiert) eingestellt.

DS-8 AC-in-1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS-7 AC-in-1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS-6 AC-in-1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS-5 AC-in-2

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS-4 Ladestrom

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS-3 Ladestrom

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS-2 Einzelgerätmodus

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS-1 Einzelgerätmodus

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schritt 2: Beispieleinstellungen

Beispiel 1 zeigt die Werkseinstellung (bei einem neuen Gerät stehen hier alle DIP-Schalter auf "off". Die Einstellung wird von einem Computer vorgenommen und spiegelt nicht die tatsächlichen Einstellungen im Mikroprozessor wieder).

<table>
<thead>
<tr>
<th>DS-8 Ladespannung</th>
<th>off</th>
<th>DS-8 Ladespannung</th>
<th>on</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-7 Ladespannung</td>
<td>on</td>
<td>DS-7 Konstantsp.-zeit</td>
<td>on</td>
</tr>
<tr>
<td>DS-6 Konstantsp.-zeit</td>
<td>on</td>
<td>DS-5 Adaptive Ladekennl.</td>
<td>on</td>
</tr>
<tr>
<td>DS-4 Dyn. Strombegrenzung</td>
<td>off</td>
<td>DS-3 UPS-Funktion</td>
<td>on</td>
</tr>
<tr>
<td>DS-2 Spannung</td>
<td>on</td>
<td>DS-1 Frequenz</td>
<td>on</td>
</tr>
</tbody>
</table>

Schritt 2 Beispiel 1 (Fabrikeinstellung):

8, 7 GEL 14.4V
6 Konstantsp.-dauer: 8 Std
5 Adapt.Laden: on
4 Dynamische Strombegrenzung: aus
3 UPS Funktion: on
2 Spannung: 230V
1 Frequenz: 50Hz

Zur Speicherung der eingestellten Werte muss der "down"-Knopf für zwei Sekunden gedrückt gehalten werden (unterster Knopf rechts von den DIP Schaltern). Die LED's "temperature" und "low-battery" werden blinken, wenn die Einstellungen angenommen wurden.

Sie können die DIP-Schalter in den Einstellungspositionen belassen, so dass Sie jederzeit später Ihre "weiteren Einstellungen" nachvollziehen können.

Schritt 2 Beispiel 2:

8, 7 OPzV 14,1V
6 Konstantsp.-dauer: 8 h
5 Adapt.Laden: on
4 Dyn. Strombegrenzung: aus
3 UPS Funktion: on
2 Spannung: 230V
1 Frequenz: 50Hz

Schritt 2 Beispiel 3:

8, 7 AGM 14,7V
6 Konstantsp.-dauer: 8 h
5 Adapt.Laden: on
4 Dyn. Strombegrenzung: on
3 UPS Funktion: off
2 Spannung: 240V
1 Frequenz: 50Hz

Schritt 2 Beispiel 4:

8, 7 Röhrenplatten
6 Konstantsp.-dauer: 4 h
5 Feste Konstantsp.-Zeit
4 Dyn. Strombegrenzung: aus
3 UPS Funktion: on
2 Spannung: 240V
1 Frequenz: 60Hz
6. WARTUNG

Der Quattro verlangt keine speziellen Wartungsmaßnahmen. Es reicht aus, wenn die Anschlüsse einmal jährlich kontrolliert werden. Feuchtigkeit sowie Staub, Öl- und sonstige Dämpfe sollten vermieden werden. Halten Sie die Geräte sauber.

7. FEHLERANZEIGEN

Wichtiger Hinweis:
Bei einer vollständig entladenen Batterie (Batteriespannung unter 10V / 20V oder 40V), beginnt der Quattro nur dann mit dem Ladetvorgang, wenn Wechselstrom an AC-in-1 angeschlossen wird.

Damit der Quattro beim Anschluss von Wechselstrom an AC-in-2 mit dem Ladevorgang beginnt, muss die Batteriespannung größer als 10V / 20V oder 40V sein.

7.1 Allgemeine Fehleranzeigen
Mit nachstehenden Angaben können Sie eventuelle Fehler schnell identifizieren. Falls Sie einen Fehler nicht beheben können, wenden Sie sich bitte an Ihren Victron Energy Händler.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Grund</th>
<th>Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Low battery" LED blinkt.</td>
<td>Die Batterie-Spannung ist niedrig.</td>
<td>Laden Sie die Batterie und prüfen Sie die Anschlüsse.</td>
</tr>
<tr>
<td>"Low battery" LED leuchtet permanent.</td>
<td>Das Gerät schaltet wegen niedriger Batteriespannung ab.</td>
<td>Laden Sie die Batterie und prüfen Sie die Anschlüsse.</td>
</tr>
<tr>
<td>"Überlast" LED blinkt.</td>
<td>Die anliegende Last ist größer als die Nennleistung.</td>
<td>Lastreduzierung</td>
</tr>
<tr>
<td>"Überlast" LED leuchtet permanent.</td>
<td>Das Gerät schaltet wegen erheblicher Überlastung ab.</td>
<td>Lastreduzierung</td>
</tr>
<tr>
<td>"Temperatur" LED blinkt oder brennt permanent.</td>
<td>Die Umgebungstemperatur ist hoch, oder die Belastung ist zu hoch.</td>
<td>Der Einbauort muss kühler und gut belüftet sein; Die Belastung muss zurückgenommen werden.</td>
</tr>
<tr>
<td>"Low battery" und "overflow" LEDs blinken abwechselnd.</td>
<td>Niedrige Batteriespannung und zu hohe Belastung</td>
<td>Aufladen der Batterie; Abklemmen oder Reduktion der Belastung, Einbau größerer Batterien. Kürzere oder dickere Kabel.</td>
</tr>
<tr>
<td>"Low battery" and "overflow" LEDs blinken gleichzeitig.</td>
<td>Brummspannung am Gleichstromanschluss übersteigt 1,5 Vrms.</td>
<td>Überprüfen Sie Batteriekabel und Anschlüsse. Überprüfen Sie die Batteriekapazität und erhöhen Sie diese u.U.</td>
</tr>
<tr>
<td>Eine Alarm LED brennt und eine zweite blinkt.</td>
<td>Der Wechselrichter hat sich wegen des Fehlers der permanent leuchtenden LED abgeschaltet. Die blinkende LED zeigt ein bevorstehendes Abschalten wegen des angezeigten Alarms an.</td>
<td>Überprüfen Sie diese Liste um das aktuelle Problem zu identifizieren</td>
</tr>
<tr>
<td>Das Ladegerät arbeitet nicht.</td>
<td>Netzspannung und/oder Netzfrequenz liegen außerhalb der Sollwerte.</td>
<td>Sorgen Sie für den richtigen Spannungsbereich (185 VAC bis 265 VAC) und den passenden Frequenzbereich (Standard Einstellung 45-65 Hz).</td>
</tr>
<tr>
<td>Die Batteriesicherung ist kaputt.</td>
<td>Die Batterie-Sicherung ist kaputt.</td>
<td>Tauschen Sie die Batterie-Sicherung aus.</td>
</tr>
<tr>
<td>Die Verformung der Eingangsspannung ist zu groß (Generator Einspeisung).</td>
<td>Die Verformung der Eingangsspannung ist zu groß (Generator Einspeisung).</td>
<td>Wählen Sie die Einstellungen “WeakAC” und schalten Sie die Dynamische Strombegrenzung ein.</td>
</tr>
<tr>
<td>Der Quattro befindet sich im Modus "Bulk protection" (Konstantstrom-Sicherung), folglich wurde die maximale Konstantstromleistung von 10 h überschritten.</td>
<td>Der Quattro befindet sich im Modus "Bulk protection" (Konstantstrom-Sicherung), folglich wurde die maximale Konstantstromleistung von 10 h überschritten.</td>
<td>Batterien überprüfen.</td>
</tr>
<tr>
<td>Der "Bulk" LED blinkt und die "Mains on" LED leuchtet.</td>
<td>Der Batteriekabel und Anschlüsse.</td>
<td>Überprüfen Sie die Batteriekabel und Anschlüsse.</td>
</tr>
<tr>
<td>Die Batterieladung bleibt unvollständig.</td>
<td>Der Ladestrom ist zu hoch, so dass die Konstantspannungsphase zu früh erreicht wird.</td>
<td>Stellen Sie den Ladestrom auf Werte zwischen dem 0,1- und 0,2-fachen der Batteriekapazität.</td>
</tr>
<tr>
<td>Die Batterieanschlüsse sind nicht in Ordnung.</td>
<td>Die Batterieanschlüsse sind nicht in Ordnung.</td>
<td>Überprüfen Sie die Batterieanschlüsse.</td>
</tr>
<tr>
<td>Der Konstantspannungswert ist nicht korrekt (zu niedrig) eingestellt.</td>
<td>Der Konstantspannungswert ist nicht korrekt (zu niedrig) eingestellt.</td>
<td>Stellen Sie die Konstantspannung auf einen korrekten Wert ein.</td>
</tr>
<tr>
<td>Der Erhaltungsspannungswert ist nicht korrekt (zu niedrig) eingestellt.</td>
<td>Der Erhaltungsspannungswert ist nicht korrekt (zu niedrig) eingestellt.</td>
<td>Stellen Sie die Erhaltungs-Spannung auf einen korrekten Wert ein.</td>
</tr>
<tr>
<td>Problem</td>
<td>Lösung</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Die verfügbare Ladezeit reicht für eine Vollladung nicht aus.</td>
<td>Erhöhen Sie die Zeitspanne und den Ladestrom.</td>
<td></td>
</tr>
<tr>
<td>Die Konstantspannungszeit ist zu kurz.</td>
<td>Verängern Sie den Ladestrom, oder wählen Sie bezüglich der Zeiten Festwerte.</td>
<td></td>
</tr>
<tr>
<td>Damit wird dann auch die Konstantstromphase zu kurz.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Batterie wird überladen.</td>
<td>Die Batterie wird zu warm (wegen schlechter Lüftung, zu hoher Umgebungstemperatur oder zu hohem Ladestrom). Verbessem Sie die Lüftung, bringen Sie die Batterie an einen kühleren Einbauort, reduzieren Sie den Ladestrom, und schließen Sie den Temperaturfühler an.</td>
<td></td>
</tr>
<tr>
<td>Die Spannung der Konstantspannungsphase ist falsch eingestellt (zu hoch).</td>
<td>Stellen Sie die Konstantspannung auf einen korrekten Wert ein.</td>
<td></td>
</tr>
<tr>
<td>Die Erhaltungsspannung ist falsch (zu hoch) eingestellt.</td>
<td>Stellen Sie die Erhaltungs-Spannung auf einen korrekten Wert ein.</td>
<td></td>
</tr>
<tr>
<td>Die Batterie ist defekt.</td>
<td>Wechseln Sie die Batterie aus.</td>
<td></td>
</tr>
<tr>
<td>Die Batterie wird zu warm (wegen schlechter Lüftung, zu hoher Umgebungstemperatur oder zu hohem Ladestrom).</td>
<td>Verbessem Sie die Lüftung, bringen Sie die Batterie an einen kühleren Einbauort, reduzieren Sie den Ladestrom, und schließen Sie den Temperaturfühler an.</td>
<td></td>
</tr>
<tr>
<td>Der Ladestrom geht gegen Null zurück, sobald die Konstantspannungsphase beginnt.</td>
<td>Die Batterie ist überhitzt (>50°C). Bringen Sie die Batterie an einen kühleren Einbauort. Reduzieren Sie den Ladestrom. Überprüfen Sie die Batterie auf inneren Kurzschluss.</td>
<td></td>
</tr>
<tr>
<td>Der Temperatursensor ist defekt.</td>
<td>Löschen Sie den Stecker des Temperatur-ählers im Quattro. Falls innerhalb von ca. einer Minute die Lade-Funktion wieder in Ordnung ist, muss der Temperaturfühler ausgetauscht werden.</td>
<td></td>
</tr>
</tbody>
</table>
7.2 Besondere LED Anzeigen
(Bezüglich der normalen LED Anzeigen siehe Absatz 3.4)

<table>
<thead>
<tr>
<th>Besonderheiten</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>

7.3 VE.Bus LED Hinweise

7.3.1 VE.Bus OK Hinweise
Falls ein Gerät prinzipiell korrekt arbeitet, aber dennoch nicht gestartet werden kann, weil ein anderes Gerät oder mehrere im Verbund Fehlermeldungen anzeigen, dann werden die fehlerfreien Geräte einen OK Hinweis anzeigen. Damit kann sich die Fehlersuche im VE.Bus System auf die als fehlerhaft angezeigten Geräte beschränken.

Wichtiger Hinweis: OK Anzeigen werden nur dann gezeigt, wenn das betreffende Gerät weder Im Lade- noch im Wechselrichterbetrieb arbeitet.

- Eine blinkende "Bulk"- LED zeigt an, dass das Gerät für Wechselrichterbetrieb bereit ist.
- Eine blinkende "Float" LED zeigt an, dass das Gerät als Ladegerät arbeiten kann.

HINWEIS: Prinzipiell müssen alle anderen LEDs aus sein. Wenn das nicht der Fall ist, liegt keine OK-Anzeige vor. Hierauf beziehen sich die folgenden Anmerkungen:

- Die vorstehend genannten besonderen LED Anzeigen können zusammen mit OK-Anzeigen vorkommen.
- Die "Low battery" LED kann zusammen mit der OK-Meldung vorkommen, welche die Ladebereitschaft anzeigt.

7.3.2 VE.Bus Fehler-Codes
In einem VE.Bus System können verschiedene Fehlermeldungen angezeigt werden. Sie werden über die "Inverter on", "Bulk", "Absorption" und "Float" LED’s angezeigt.

Zur korrekten Interpretation der Fehlermeldungen (VE.Bus Error Code) müssen die folgenden Schritte durchlaufen werden:

1. Beim Gerät muss ein Fehler aufgetreten sein (kein AC-Ausgang).
2. Blinkt die "Wechselrichter An" (Inverter on) LED? Ist das nicht der Fall, liegt keine VE.Bus Fehlermeldung vor. Falls eine oder mehrere der LEDs d.h. "Bulk", "Absorption" oder "Float" blinken, dann muss das Blinken abwechselnd mit dem Blinken der "Inverter On" LED geschehen. Ist das nicht der Fall, dann liegt keine VE.Bus Fehlermeldung vor.
3. Anhand der "Bulk" LED können Sie feststellen, welche der 3 nachstehenden Tabellen Sie benutzen müssen.
5. Die Bedeutung der Fehleranzeige finden Sie in den folgenden Tabellen.
Alle der unten aufgeführten Bedingungen müssen zutreffen!

10. Bei diesem Gerät ist ein Fehler aufgetreten! (Kein AC-Ausgang)
11. Die Wechselrichter LED blinkt (abwechselnd mit einer der "Bulk", "Absorption oder Float" LEDs).
12. Mindestens eine der LEDs "Bulk", "Absorption" oder "Float" leuchtet oder blinkt.

<table>
<thead>
<tr>
<th>Bulk LED aus</th>
<th>Bulk LED blinkt</th>
<th>Bulk LED an</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption LED</td>
<td>Absorption LED</td>
<td>Absorption LED</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>blinkt</td>
<td>blinkt</td>
<td>blinkt</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>Float LED</td>
<td>Float LED</td>
<td>Float LED</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>blinkt</td>
<td>blinkt</td>
<td>blinkt</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bulk LED</th>
<th>Absorption LED</th>
<th>Code</th>
<th>Bedeutung</th>
<th>Ursache / Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>1</td>
<td>0 3 6</td>
<td>Das Gerät ist abgeschaltet, weil eine andere Phase im System ausgefallen ist.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>3</td>
<td>0 3 6</td>
<td>Im System wurden mehr oder weniger Geräte als erwartet gefunden.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>4</td>
<td>0 3 6</td>
<td>Es wurde kein Einzelgerät gefunden.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>5</td>
<td>0 3 6</td>
<td>Überspannung am Wechselstrom-Ausgang.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>10</td>
<td>0 3 6</td>
<td>Es besteht ein Zeitsynchronisationsproblem.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>14</td>
<td>0 3 6</td>
<td>Das Gerät kann keine Daten übermitteln.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>17</td>
<td>0 3 6</td>
<td>Eines der Geräte hat die "Master"-Funktion übernommen, da der ursprüngliche "Master" ausgefallen ist</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>18</td>
<td>0 3 6</td>
<td>Es ist eine Überspannung vorhanden.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>22</td>
<td>0 3 6</td>
<td>Dieses Gerät arbeitet nicht in der "Slave"-Funktion.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>25</td>
<td>0 3 6</td>
<td>Firmware Inkompatibilität. Ein angeschlossenes Gerät hat veraltete Firmware, die ein Zusammenwirken mit diesem Gerät nicht ermöglicht.</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>26</td>
<td>0 3 6</td>
<td>Interner Fehler</td>
</tr>
</tbody>
</table>
8. Technische Spezifikationen

<table>
<thead>
<tr>
<th>Quattro</th>
<th>12/3000/120-50/50 230V</th>
<th>24/3000/70-50/50 230V</th>
<th>48/3000/35-50/50 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerControl / PowerAssist</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Integrierter Transferschalter</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Wechselstrom-Eingänge (2x)</td>
<td>Eingangsspannungsbereich: 187-265 VAC Eingangs frequenz: 45 – 65 Hz / Leistungsfaktor: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximale durchschaltbarer Strom (A)</td>
<td>AC-in-1: 50A AC-in-2: 50A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mindeststrom PowerAssist (A)</td>
<td>AC-in-1: 5,3A AC-in-2: 5,3A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WECHSELRIICHTER

<table>
<thead>
<tr>
<th>Ausgang (1)</th>
<th>Ausgangsspannung: 230 V ± 2% Frequenz: 50 Hz ± 0,1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>kont. Ausgangsleistung bei 25°C (VA)</td>
<td>3000</td>
</tr>
<tr>
<td>kont. Ausgangsleist. bei 25°C (W)</td>
<td>2400</td>
</tr>
<tr>
<td>kont. Ausgangsleistung bei 40°C (W)</td>
<td>2200</td>
</tr>
<tr>
<td>kont. Ausgangsleistung bei 65°C (W)</td>
<td>1700</td>
</tr>
<tr>
<td>Spitzenleistung (W)</td>
<td>6000</td>
</tr>
<tr>
<td>Max. Wirkungsgrad (%)</td>
<td>93</td>
</tr>
<tr>
<td>Null-Last Leistung (W)</td>
<td>20</td>
</tr>
<tr>
<td>Null-Last Leistung im AES-Modus (W)</td>
<td>15</td>
</tr>
<tr>
<td>Null-Last Leistung im Such-Modus (W)</td>
<td>8</td>
</tr>
</tbody>
</table>

LADERGERÄT

'Konstant'-Ladespannung (V DC)	14,4	28,8	57,6
'Erhaltungs'-Ladespannung (V DC)	13,8	27,6	55,2
Lagermodus (V DC)	13,2	26,4	52,8
Ladestrom Hausbatterie (A)	120	70	35
Ladestrom Starterbatterie (A)	4		
Batterie-Temperatursensor	ja		

ALLGEMEINES

Zusätzlicher AC-Ausgang	Maximallast: 25A Schaltet sich im Wechselrichterbetrieb ab
Programmierbares Relais	(5)
Schutz	Ja
Gemeinsame Merkmale	Betriebstemperatur: –40 bis +65°C (Gebäselüftung) Feuchte (nicht kondensierend): max. 95%

Gehäuse

Gemeinsame Merkmale	Material & Farbe: Aluminium (blau RAL 5012) Schutzklasse: IP 21
230 V AC Anschluss	Vier M8 Bolzen (2 Plus- und 2 Minus-Anschlüsse)
Gewicht (kg)	19
Abmessungen (HxBxT in mm)	362 x 258 x 218

NORMEN

| Sicherheit | EN 60335-1, EN 60335-2-29 |
| Emissionen / Immunität | EN 55014-1, EN 55014-2, EN 61000-3-3 |

1) Kann auf 60Hz und 240V eingestellt werden
2) Schutz
 a. Ausgangskurzschluss
 b. Überlast
 c. Batteriespannung zu hoch
 d. Batteriespannung zu niedrig
 e. Temperatur zu hoch
 f. 230 VAC am Wechselrichterausgang
 g. Brummspannung am Eingang zu hoch

3) Nichtlineare Last, Spitzenfaktor 3:1
4) Bei 25°C Umgebungstemperatur
5) Programmierbares Relais, das für einen allgemeinen Alarm DC-Unterspannungs-Alarm oder Start-/Stopp-Funktion für ein Aggregat eingestellt werden kann.
 Wechselstrom Nenn-Leistung: 230V / 4A
NOTA:
Este manual es para productos con firmware xxxx400 o superior (siendo x cualquier número)
El firmware puede encontrarse en el microprocesador, una vez retirado el panel frontal.
Es posible actualizar unidades más antiguas, siempre y cuando el mismo número de 7 dígitos empiece por 26 ó 27. Si
empezara por 19 ó 20 sería una microprocesadora antiguo y no sería posible actualizarlo a 400 o superior.

1. INSTRUCCIONES DE SEGURIDAD

En general
Lea en primer lugar la documentación que acompaña al producto para familiarizarse con las indicaciones de seguridad y las
instrucciones antes de utilizarlo.
Este producto se ha diseñado y comprobado de acuerdo con los estándares internacionales. El equipo debe utilizarse
exclusivamente para la aplicación prevista.

ADVERTENCIA: PELIGRO DE DESCARGA ELÉCTRICA
El producto se usa junto con una fuente de alimentación permanente (batería). Aunque el equipo esté apagado, puede
producirse una tensión eléctrica peligrosa en los terminales de entrada y salida. Apague siempre la alimentación CA y
desconecte la batería antes de realizar tareas de mantenimiento.

El producto no contiene piezas en su interior que puedan ser manipuladas por el usuario. No retire el panel frontal ni ponga el
producto en funcionamiento si no están colocados todos los paneles. Las operaciones de mantenimiento deben ser realizadas
por personal cualificado.

No utilice nunca el equipo en lugares donde puedan producirse explosiones de gas o polvo. Consulte las especificaciones
suministradas por el fabricante de la batería para asegurarse de que puede utilizarse con este producto. Las instrucciones de
seguridad del fabricante de la batería deben tenerse siempre en cuenta.

AVISO: no levante objetos pesados sin ayuda.

Instalación
Lea las instrucciones antes de comenzar la instalación.

Este producto es un dispositivo de clase de seguridad I (suministrado con terminal de puesta a tierra para seguridad). Sus
terminales de salida CA deben estar puestos a tierra continuamente por motivo de seguridad. Hay otro punto de
puesta a tierra adicional en la parte exterior del producto. Si se sospecha que la puesta a tierra está dañada, el equipo
debe desconectarse y evitar que se pueda volver a poner en marcha de forma accidental; póngase en contacto con personal
técnico cualificado.

Compruebe que los cables de conexión disponen de fusibles y disyuntores. No sustituya nunca un dispositivo de protección
por un componente de otro tipo. Consulte en el manual las piezas correctas.

Antes de encender el dispositivo compruebe si la fuente de alimentación cumple los requisitos de configuración del producto
descritos en el manual.

Compruebe que el equipo se utiliza en condiciones de funcionamiento adecuadas. No lo utilice en un ambiente húmedo o con
polvo.
Compruebe que hay suficiente espacio alrededor del producto para su ventilación y que los orificios de ventilación no estén
blockeados.
Instale el producto en un entorno a prueba del calor. Compruebe que no haya productos químicos, piezas de plástico, cortinas
u otros textiles, etc., en las inmediaciones del equipo.

Transporte y almacenamiento
Para transportar o almacenar el producto, asegúrese de que los cables de alimentación principal y de la batería estén
desconectados.

No se aceptará ninguna responsabilidad por los daños producidos durante el transporte si el equipo no lleva su embalaje
original.

Garde el producto en un entorno seco, la temperatura de almacenamiento debe oscilar entre –20°C y 60°C.

Consulte el manual del fabricante de la batería para obtener información sobre el transporte, almacenamiento, recarga y
eliminación de la batería.
2. DESCRIPCIÓN

2.1 En general

La base del Quattro es un inversor sinusoidal extremadamente potente, cargador de batería y conmutador automático en una carcasa compacta. El Quattro presenta las siguientes características adicionales, muchas de ellas exclusivas:

Dos entradas CA; sistema de conmutación integrado entre tensión de pantalán y del grupo generador

El Quattro tiene dos entradas CA (AC-in-1 y AC-in-2) para conexión de dos fuentes de tensión independientes. Por ejemplo, dos grupos de generadores o alimentación de la red y un grupo generador. El Quattro selecciona automáticamente la entrada donde hay tensión. Si hay tensión en ambas entradas, el Quattro selecciona la entrada AC-in-1, a la que normalmente se conecta el grupo generador.

Dos salidas CA

Además de la salida ininterrumpida habitual (AC-out-1), hay una segunda salida (AC-out-2) que desconecta su carga en caso de funcionamiento con batería. Ejemplo: hay una caldera eléctrica que sólo funciona con el grupo generador en marcha o con corriente de pantalán.

Conmutación automática e ininterrumpida

En caso de fallo de la alimentación o cuando se apaga el grupo generador, el Quattro cambiará a funcionamiento de inversor y se encargará del suministro de los dispositivos conectados. Esta operación es tan rápida que el funcionamiento de ordenadores y otros dispositivos eléctricos no se ve interrumpido (Sistema de alimentación ininterrumpida o SAI). El Quattro resulta pues muy adecuado como sistema de alimentación de emergencia en aplicaciones industriales y de telecomunicaciones. La corriente alterna máxima que se puede conmutar es 30 A.

Capacidad de funcionamiento trifásico

Se pueden configurar tres unidades para salida trifásica. Pero eso no es todo: hasta 6 grupos de tres unidades pueden conectarse en paralelo para lograr una potencia del inversor de 45 kW/54 kVA y más de 1.200 A de capacidad de carga.

PowerControl – máximo uso de la corriente de red cuando es limitada

El Quattro puede generar una enorme corriente de carga. Esto supone una sobrecarga de la conexión del pantalán o del grupo generador. Para ambas entradas CA, por tanto, se puede establecer una corriente mínima. El Quattro tiene en cuenta otros usuarios de corriente y sólo usa la corriente "excedente" para cargar.
- La entrada AC-in-1, a la que normalmente se conecta el grupo generador, puede establecerse en un máximo fijo con los conmutadores DIP, con VE.Net o con un PC, para que el grupo generador no se sobrecargue nunca.
- La entrada AC-in-2 también se puede configurar con un valor máximo fijo. En aplicaciones móviles (embarcaciones, vehículos), no obstante, se seleccionará un valor variable desde el panel Multi Control. De esta forma, la corriente máxima se puede adaptar a la corriente de red disponible con extrema facilidad.

PowerAssist – Uso ampliado del grupo generador y corriente de red: función Quattro "cosuministro"

El Quattro funciona en paralelo con el grupo generador o la conexión del pantalán. La falta de corriente se compensa de forma automática: el Quattro extrae potencia de la batería y sirve de ayuda. El exceso de corriente se utiliza para recargar la batería. Esta función única ofrece la solución definitiva para el "problema de corriente de red": herramientas eléctricas, lavavajillas, lavadoras, cocinas eléctricas, etc., pueden funcionar con la corriente de red de 16 A, e incluso menos. Además, se puede instalar un pequeño generador.

Tres relés programables

El Quattro dispone de 3 relés programables. Estos relés puede programarse para cualquier tipo de aplicación, por ejemplo como relé de arranque para un grupo generador.

Dos puertos programables analógicos/digitales de entrada/salida

El Quattro también dispone de 2 puertos analógicos/digitales de entrada/salida. Estos puertos pueden usarse para distintos fines. Una aplicación, por ejemplo, sería la de comunicarse con el BMS o con una batería de Litio-Ion.

Cambio de frecuencia

Cuando los inversores solares están conectados a la salida de un Multi o de un Quattro, el excedente de energía solar se utiliza para recargar las baterías. Una vez alcanzada la tensión de absorción, el Multi o Quattro detendrán el inversor solar cambiando la frecuencia de salida en 1Hz (de 50Hz a 51Hz, por ejemplo). Cuando la tensión de la batería haya caído ligeramente, la frecuencia volverá a su valor normal y los inversores solares volverán a funcionar.

Monitor de baterías integrado (opcional)

La solución ideal cuando un Multi, o un Quattro, forma parte de un sistema híbrido (generador diesel, inversor/cargadores, batería acumuladora y energía alternativa). El monitor de baterías integrado puede configurarse para arrancar y detener el generador.
- Arrancar cuando se alcance un % de descarga predeterminado, y/o
- arrancar (con una demora preestablecida) cuando se alcance una tensión de la batería predeterminada, y/o
- arrancar (con una demora preestablecida) cuando se alcance un nivel de carga predeterminado.
- Detener cuando se alcance una tensión de la batería predeterminada, o
- detener (con un tiempo de demora preestablecido) una vez completada la fase de carga "bulk", y/o
- detener (con una demora preestablecida) cuando se alcance un nivel de carga predeterminado.

Energía solar

El Quattro es perfecto para las aplicaciones de energía solar. Puede utilizarse para construir sistemas autónomos así como sistemas acooplados a la red.
Alimentación de emergencia o funcionamiento autónomo cuando falla la red eléctrica

Las casas o edificios provistos de paneles solares o una micro central eléctrica (una caldera para calefacción central que genera energía) u otras fuentes de energías sostenibles tienen un suministro de energía autónoma potencial que puede utilizarse para alimentar equipos esenciales (bombar de calefacción central, refrigeradores, congeladores, conexiones de Internet, etc.) cuando hay fallos de alimentación. Sin embargo, suele suceder que los paneles solares acoplados a la red y/o la calefacción y microcentrales eléctricas suelen caerse cuando falla la alimentación de red. Con el Quattro y baterías, este problema puede resolverse de una manera sencilla: **el Quattro puede sustituir a la red cuando se produce un apagón.** Cuando las fuentes de energía alternativas producen más potencia de la necesaria, Quattro utilizará el excedente para cargar las baterías; en caso de potencia insuficiente, Quattro suministrará alimentación adicional de los recursos energéticos de sus baterías.

Programable con conmutadores DIP, panel VE.Net u ordenador personal

El Quattro se suministra listo para usar. Hay tres funciones para cambiar determinados ajustes si se desea:

- Todos los valores, con la excepción del relé multifuncional, pueden cambiarse con un panel VE.Net.
- Todos los valores se pueden cambiar con un PC y el software gratuito que se puede descargar desde nuestro sitio web www.victronenergy.com

2.2 Cargador de batería

Carga variable de 4 etapas: inicial – absorción – flotación - almacenamiento

El sistema de gestión de baterías variable activado por microprocesador puede ajustarse a distintos tipos de baterías. La función variable adapta automáticamente el proceso de carga al uso de la batería.

La cantidad de carga correcta: tiempo de absorción variable

En caso de una ligera descarga de la batería, la absorción se reduce para evitar sobrecargas y una formación excesiva de gases. Después de una descarga profunda, el tiempo de absorción se amplía automáticamente para cargar la batería completamente.

Prevención de daños por un exceso de gaseado: el modo BatterySafe

Si, para cargar una batería rápidamente, se ha elegido una combinación de alta corriente de carga con una tensión de absorción alta, se evitará que se produzcan daños por exceso de gaseado limitando automáticamente el ritmo de incremento de tensión una vez se haya alcanzado la tensión de gaseado.

Menor envejecimiento y necesidad de mantenimiento cuando la batería no está en uso: el modo de almacenamiento

El modo de almacenamiento se activa cuando la batería no ha sufrido ninguna descarga en 24 horas. En el modo de almacenamiento, la tensión de flotación se reduce a 2,2V/celda (13,2V para baterías de 12V) para reducir el gaseado y la corrosión de las placas positivas. Una vez a la semana, se vuelve a subir la tensión a nivel de absorción para “igualar” la batería. Esta función evita la estratificación del electrolito y la sulfatación, las causas principales de los fallos en las baterías.

Dos salidas CC para cargar dos baterías

El terminal CC principal puede suministrar la totalidad de la corriente de salida. La segunda salida, pensada para cargar una batería de arranque, se limita a 4 A y tiene una tensión de salida ligeramente menor.

Incremento de la vida útil de la batería: compensación de temperatura

El sensor de temperatura (suministrado con el producto) sirve para reducir la tensión de carga cuando la temperatura de la batería sube. Esto es muy importante para las baterías sin mantenimiento que de otro modo se secan por sobrecarga.

Sonda de tensión de la batería: la tensión de carga adecuada

La pérdida de tensión debido a la resistencia del cable puede compensarse utilizando la sonda de tensión para medir la misma directamente en el bus CC o en los terminales de la batería.

Más información sobre baterías y cargas

Nuestro libro "Energy Unlimited" ofrece más información sobre baterías y carga de baterías y puede conseguirse gratuitamente en nuestro sitio web (www.victronenergy.com -> Asistencia y descargas -> Información técnica general). Para más información sobre carga variable, le rogamos consulte el apartado Información técnica general de nuestro sitio web.
2.3 Autoconsumo - sistemas de almacenamiento de energía solar
Para obtener más información consulte nuestro libro blanco "Self Consumption or Grid independence with the Victron Energy Storage Hub" (Autoconsumo o independencia de la red con el Storage Hub de Victron Energy).
Se puede descargar el software apropiado desde nuestro sitio web.

Si el Multi/Quattro se usa con una configuración en la que revertirá energía a la red eléctrica, se debe habilitar el código de conformidad con la red seleccionando con la herramienta VEConfigure el ajuste de código de conformidad con la red correspondiente al país.
De esta forma, el Multi/Quattro cumplirá las normativas locales.
Una vez configurado, se necesitará una contraseña para deshabilitar el código de cumplimiento con la red o cambiar parámetros relativos a dicho código.

Si el código de la red eléctrica local no es compatible con el Multi/Quattro, se deberá utilizar un dispositivo de interfaz externo certificado para conectar el Multi/Quattro a la red.

El Multi/Quattro también puede utilizarse como inversor bidireccional funcionando en paralelo a la red, integrado en un sistema personalizado (PLC u otro) que se ocupa del bucle de control y de la medición de la red, consulte http://www.victronenergy.com/live/system_integration:hub4_grid_parallel
3. FUNCIONAMIENTO

3.1 Interruptor de “encendido/espera/solo cargador”

Al poner el conmutador en “on”, el producto es plenamente operativo. El inversor se pone en marcha y el LED “inverter on” (inversor activado) se enciende.

Una tensión CA conectada al terminal “AC-in” (CA de entrada) se conmutará a través del terminal “AC-out”, (CA de salida) si está dentro de las especificaciones. El inversor se apagará, el LED “mains on” (red activada) se encenderá y el cargador empezará a cargar. Los LED “bulk” (inicial), “absorption” (absorción) o “float” (carga lenta) se encenderán, según el modo en que se encuentre el cargador.

Si la tensión en el terminal “AC-in” se rechaza, el inversor se encenderá.

Cuando el conmutador se pone en “charger only” (cargador sólo), sólo funcionará el cargador de batería del Quattro (si hay tensión de la red). En este modo, la tensión de entrada también se conmuta al terminal de salida “AC-out”.

NOTA: Cuando sólo necesite la función de carga, asegúrese de que el conmutador está en “charger only”. Esto hará que no se active el inversor si se pierde la tensión de la red, evitando así que sus baterías se queden sin carga.

3.2 Control remoto

Es posible utilizar un control remoto con un interruptor de tres vías o con UN panel Multi Control.

El panel de Multi Control tiene un selector giratorio con el que se puede fijar la corriente máxima de entrada CA: ver PowerControl y PowerAssist en la Sección 2.

3.3 Ecuализación y absorción forzada

3.3.1 Ecuализación

Las baterías de tracción necesitan cargarse de forma regular. En modo cuализación, Quattro cargará con mayor tensión durante una hora (1 V sobre la tensión de absorción para una batería de 12 V, 2 V para una batería de 24 V). La corriente de carga se limita después a ¼ del valor establecido. Los LED “bulk” (inicial) y “absorption” (absorción) parpadean alternativamente.

El modo de cuализación suministra una tensión de carga superior de la que pueden soportar la mayoría de los dispositivos que consumen CC. Estos dispositivos deben desconectarse antes de proceder a la carga adicional.

3.3.2 Absorción forzada

En determinadas circunstancias puede ser mejor cargar la batería durante un tiempo fijo al nivel de tensión de absorción. En el modo absorción flia, Quattro cargará al nivel normal de tensión de absorción durante el máximo tiempo de absorción establecido. El LED “absorption” se ilumina.

3.3.3 Activación de la ecualización o absorción forzada

El Quattro puede ponerse en ambos estados desde el panel remoto así como con el conmutador del panel frontal, siempre que todos los conmutadores (frontal, remoto y panel) estén “activados” y ninguno de ellos esté en “cargador sólo”.

Para poner Quattro en este estado, hay que seguir el procedimiento que se indica a continuación.

Si el conmutador no está en la posición deseada después de hacer este procedimiento, puede volver a cambiarse rápidamente una vez. De esta forma no se cambiará el estado de carga.

NOTA: El cambio de “activado” a “cargador sólo” y viceversa, como se describe a continuación, debe hacerse rápidamente. El conmutador debe girarse de forma que la posición intermedia se “salte”, por así decirlo. Si el conmutador permaneciera en la posición “off” aunque sólo sea un momento, el dispositivo podría apagarse. En este caso, deberá reiniciarse el procedimiento a partir del paso 1. Se necesita un cierto grado de familiarización al usar el conmutador frontal del Compact en particular.

Cuando se usa el panel remoto, esto no es tan importante.

Procedimiento:

Compruebe que todos los conmutadores (es decir, conmutador frontal, remoto o el panel remoto en su caso) están en la posición “on” (activado). La activación de la ecualización o de la absorción forzada sólo tiene sentido si se ha completado el ciclo de carga normal (el cargador está en “Float” (flotación)).

Para activar:

a. Cambie rápidamente de “on” a “charger only” y deje el conmutador en esta posición entre 0,5 y 2 segundos.

b. Vuelva a cambiar rápidamente de “charger only” a “on” y deje el conmutador en esta posición entre 0,5 y 2 segundos.

c. Vuelva a cambiar una vez más de “on” a “charger only” y deje el conmutador en esta posición.

En el Quattro (y, si estuviera conectado, en el panel MultiControl) parpadearán 5 veces los LED “Bulk”, “Absorption” y “Float”.

A continuación, los LED “Bulk”, “Absorption” y “Float” se encenderán dos segundos.

Para apagar:

a. Si el interruptor está en “on” mientras se enciende el LED “Bulk”, el cargador conmutará a modo cuализación.

b. Si el interruptor está en “on” mientras se enciende el LED “Absorption”, el cargador conmutará a absorción forzada.

c. Si el interruptor está en “on” después de que la secuencia de tres LED termine, el cargador conmutará a “Float”.

d. Si el interruptor no se ha movido, el Quattro permanecerá en modo “charger only” (cargador sólo) y conmutará a “Float”.
3.4 Indicaciones de los LED y significado

- **LED apagado**
- **LED intermitente**
- **LED encendido**

Inversor

<table>
<thead>
<tr>
<th>LED Encendido</th>
<th>Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
</tr>
</tbody>
</table>

El inversor está encendido y suministra energía a la carga.

<table>
<thead>
<tr>
<th>LED Intermitente</th>
<th>Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
</tr>
</tbody>
</table>

Se ha excedido la potencial nominal del inversor. El LED indicador de “sobrecarga” parpadea.

<table>
<thead>
<tr>
<th>LED Apagado</th>
<th>Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
</tr>
</tbody>
</table>

El inversor se ha parado debido a una sobrecarga o cortocircuito.

<table>
<thead>
<tr>
<th>LED Apagado</th>
<th>Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
</tr>
</tbody>
</table>

La batería está casi vacía.

<table>
<thead>
<tr>
<th>LED Apagado</th>
<th>Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
</tr>
</tbody>
</table>

El inversor se ha parado debido a la baja tensión de la batería.

<table>
<thead>
<tr>
<th>LED Apagado</th>
<th>Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
</tr>
</tbody>
</table>

La temperatura interna está alcanzando un nivel crítico.
El conversor se para debido al exceso de temperatura interna.

- Si los LED parpadean de manera alterna, la batería está casi vacía y se ha superado la potencia nominal.
- Si “overload” y “low battery” parpadean simultáneamente, es que hay una tensión de ondulación demasiado alta en la conexión de la batería.

El inversor se para debido al exceso de tensión de ondulación en la conexión de la batería.
Cargador de batería

<table>
<thead>
<tr>
<th></th>
<th>Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains on</td>
<td>on</td>
</tr>
<tr>
<td>Bulk</td>
<td>off</td>
</tr>
<tr>
<td>Absorption</td>
<td>off</td>
</tr>
<tr>
<td>Float</td>
<td>charger only</td>
</tr>
</tbody>
</table>

La tensión CA en AC-in-1 o en AC-in-2 se conmuta y el cargador funciona en modo carga inicial.

La tensión CA en AC-in-1 o en AC-in-2 se activa y el cargador funciona, pero todavía no se ha alcanzado la tensión de absorción fija (modo de protección de batería).

La tensión CA en AC-in-1 o en AC-in-2 se activa y el cargador funciona en fase de absorción.

La tensión CA en AC-in-1 o en AC-in-2 se activa y el cargador funciona en fase de flotación o almacenamiento.

La tensión CA en AC-in-1 o en AC-in-2 se activa y el cargador funciona en modo de ecualización.
Indicaciones especiales

Fijadas con corriente de entrada limitada

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
</tr>
<tr>
<td>bulk</td>
<td>off</td>
</tr>
<tr>
<td>absorption</td>
<td>charger</td>
</tr>
<tr>
<td>float</td>
<td>only</td>
</tr>
</tbody>
</table>

La tensión CA en AC1-in-1 o AC-in-2 se activa. La corriente de entrada CA es igual a la corriente de carga. El cargador queda limitado a 0 A.

Configurado para suministrar corriente adicional

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>on</td>
</tr>
<tr>
<td>bulk</td>
<td>off</td>
</tr>
<tr>
<td>absorption</td>
<td>charger</td>
</tr>
<tr>
<td>float</td>
<td>only</td>
</tr>
</tbody>
</table>

La tensión CA en AC-in-1 o AC-in-2 se activa, pero la carga demanda más corriente de la que puede suministrar la red. El inversor se activa para suministrar la corriente adicional necesaria.
4. INSTALACIÓN

Este producto debe instalarlo exclusivamente un ingeniero eléctrico cualificado.

4.1 Ubicación

El Quattro debe instalarse en una zona seca y bien ventilada, tan cerca como sea posible de las baterías. El dispositivo debe tener un espacio libre alrededor de al menos 10 cm para refrigeración.

Una temperatura ambiente excesivamente alta tiene las siguientes consecuencias:
- ciclo de vida más corto
- corriente de carga inferior
- potencia pico inferior o desconexión del inversor.

Nunca coloque el aparato directamente sobre las baterías.

El Quattro puede montarse en la pared. Para su instalación, en la parte posterior de la carcasa hay dos agujeros y un gancho (ver apéndice G). El dispositivo puede colocarse horizontal o verticalmente. Para que la ventilación sea óptima es mejor colocarlo verticalmente.

La parte interior del dispositivo debe quedar accesible tras la instalación.

La distancia entre el Quattro y la batería debe ser la menor posible para reducir al mínimo la pérdida de tensión en los cables.

El Quattro no tiene fusibles CC internos. El fusible CC debe instalarse fuera del Quattro.

4.2 Conexión de los cables de la batería

Para utilizar toda la capacidad del Quattro deben utilizarse baterías con capacidad suficiente y cables de batería de sección adecuada.

Consultar la tabla:

<table>
<thead>
<tr>
<th></th>
<th>12/3000/120</th>
<th>24/3000/70</th>
<th>48/3000/35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de batería recomendada (Ah)</td>
<td>400-1200</td>
<td>200-700</td>
<td>100-400</td>
</tr>
<tr>
<td>Fusible CC recomendado</td>
<td>400A</td>
<td>300A</td>
<td>125A</td>
</tr>
<tr>
<td>Sección recomendada (mm²) para terminales + y -</td>
<td>2x 50 mm²</td>
<td>50 mm²</td>
<td>35 mm²</td>
</tr>
<tr>
<td>0 – 5 m*</td>
<td>2x 70 mm²</td>
<td>2x 50 mm²</td>
<td>2x 35 mm²</td>
</tr>
<tr>
<td>5 -10 m*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* “2x” significa dos cables positivos y dos negativos.

Procedimiento

Para conectar los cables de batería siga el procedimiento descrito a continuación:

Utilice una llave dinamométrica aislada para no cortocircuitar la batería.
Torsión máxima: 9 Nm
Evite que los cables de la batería entren en contacto Para evitar cortocircuitar la batería debe utilizar una llave de tubo aislada.

- Afloje los cuatro tornillos del panel frontal inferior de la parte delantera de la unidad y retire el panel inferior.
- Conecte los cables de batería: + (rojo) al terminal derecho y - (negro) al terminal izquierdo (ver apéndice A).
- Apriete las conexiones después de montar las piezas de sujección.
4.3 Conexión de los cables CA

El Quattro es un dispositivo de clase de seguridad I (suministrado con terminal de puesta a tierra para seguridad). Los terminales de entrada y salida CA y la puesta a tierra de la parte exterior deben tener una toma de tierra continua por motivos de seguridad. Consulte las instrucciones siguientes.

El Quattro dispone de un relé de puesta a tierra (ver apéndice) que automáticamente conecta la salida N a la carcasa si no hay alimentación CA externa. Si hay alimentación CA externa, el relé de puesta a tierra se abrirá antes de que el relé de seguridad se cierre (relé H en apéndice B). De esta forma se garantiza el funcionamiento correcto del disyuntor para las fugas a tierra que está conectado a la salida.

En una instalación fija, una puesta a tierra ininterrumpida puede asegurarse mediante el cable de puesta a tierra de la entrada CA. En caso contrario, se deberá poner a tierra la carcasa.

En una instalación móvil (por ejemplo con una toma de corriente de red), la interrupción de la conexión del pantalán desconectará simultáneamente la conexión de puesta a tierra. En tal caso, la carcasa debe conectarse al chasis (del vehículo) o al casco o placa de toma de tierra (de la embarcación). En general, la conexión descrita más arriba para la puesta a tierra del pantalán no se recomienda para embarcaciones por la corrosión galvánica. La solución es utilizar un transformador aislante.

El inversor cuenta con un transformador que aísla la frecuencia de la red. Esto impide que haya corriente CC en un puerto CA. De este modo se pueden usar un diferencial (RCD) de tipo A.

AC-in-1 (ver apéndice A)
Si en estos terminales hay tensión CA, Quattro utilizará esta conexión. Normalmente se conectará un generador a AC-in-1. La entrada CA-in-1 debe protegerse por medio de un fusible o de un disyuntor magnético de 50A o menos, llevando un cable con una sección suficiente. Si la alimentación CA tuviese una capacidad nominal menor, la capacidad del fusible o disyuntor magnético también deberá reducirse.

AC-in-2 (ver apéndice A)
Si en estos terminales hay tensión CA, Quattro utilizará esta conexión, a menos que también haya tensión en AC-in-1. El Quattro seleccionará automáticamente AC-in-1. En general, el suministro de red o la tensión de pantalán se conectarán a AC-in-2. La entrada CA-in-2 debe protegerse por medio de un fusible o de un disyuntor magnético de 50A o menos, llevando un cable con una sección suficiente. Si la alimentación CA tuviese una capacidad nominal menor, la capacidad del fusible o disyuntor magnético también deberá reducirse.

Nota: Puede que el Quattro no arranque si sólo hay CA en AC-in-2 y la tensión CC de la batería está un 10% o más por debajo de la tensión nominal (menos de 11 V en el caso de una batería de 12 V).
Solución: conecte el suministro CA a AC-in-1, o recargue la batería.

AC-out-1 (ver apéndice A)
El cable de salida CA puede conectarse directamente al bloque terminal "AC-out" (salida CA). Gracias a su función PowerAssist, el Quattro puede añadir a la salida hasta 3kVA (esto es, 3000 / 230 = 13A) en momentos de gran demanda de potencia. Junto con una corriente de entrada máxima de 50A, significa que la salida puede suministrar hasta 50 + 13 = 63A.
Debe incluirse un disyuntor para las fugas a tierra y un fusible o disyuntor capaz de soportar la carga esperada, en serie con la salida, y con una sección de cable adecuada. La potencia nominal máxima del fusible o disyuntor es de 63A.

AC-out-2 (ver apéndice A)
Hay una segunda salida que desconecta su carga en caso de funcionamiento con batería. En estos terminales, se conectan equipos que sólo funcionan si hay tensión CA en AC-in-1 o AC-in-2, por ejemplo una caldera eléctrica o un aire acondicionado. La carga de AC-out-2 se desconecta inmediatamente cuando el Quattro cambia a funcionamiento con batería. Una vez que AC-in-1 o AC-in-2 disponen de CA, la carga en AC-out-2 se volverá a conectar, en un lapso de aproximadamente 2 minutos. Esto permite que se estabilice el generador.
AC-out-2 puede soportar cargas de hasta 25A. Se debe conectar un disyuntor para las fugas a tierra y un fusible de 25A en serie con AC-out.

Procedimiento
Utilice un cable de tres hilos. Los terminales de conexión están claramente codificados:
PE: tierra
N: conductor neutro
L: fase/conductor con corriente
4.4 Opciones de conexión

4.4.1 Batería de arranque (terminal de conexión E, ver apéndice A)
El Quattro dispone de una conexión para cargar una batería de arranque. La corriente de salida se limita a 4 A.

4.4.2 Sonda de tensión (terminal de conexión E, ver apéndice A)
Para compensar las posibles pérdidas por cable durante la carga, se pueden conectar dos sondas con las que se mide la tensión directamente en la batería o en los puntos de distribución positivos y negativos. Utilice cable con una sección de 0,75 mm².
Durante la carga de la batería, Quattro compensará la caída de tensión en los cables CC hasta un máximo de 1 voltio (es decir, 1 V en la conexión positiva y 1 V en la negativa). Si la caída de tensión puede ser superior a 1 V, la corriente de carga se limita de forma que la caída de tensión siga siendo de 1 V.

4.4.3 Sensor de temperatura (terminal de conexión E, ver apéndice A)
Para cargas compensadas por temperatura, puede conectarse el sensor de temperatura (que se suministra con Quattro). El sensor está aislado y debe colocarse en el terminal negativo de la batería.

4.4.4 Control remoto
El Quattro puede manejarse de forma remota de dos maneras:
- Con un conmutador externo (terminal de conexión H, ver apéndice A). Sólo funciona si el conmutador del Quattro está "on".
- Con un panel Multi Control (conectado a una de las dos tomas RJ48 B, ver apéndice A). Sólo funciona si el conmutador del Quattro está "on".
Usando el panel de control remoto Multi, sólo se puede establecer el límite de corriente para AC-in-2 (respecto a PowerControl y PowerAssist).
El límite de corriente para AC-in-1 puede establecerse con los conmutadores DIP o mediante software.
Sólo se puede conectar un control remoto, es decir, o bien un conmutador o un panel Multi Control.

4.4.5. Relé programable
El Quattro está equipado con un relé multifuncional, que está programado como relé de alarma. Este relé se puede programarse para todo tipo de aplicaciones, como por ejemplo arrancar un generador (se necesita el software del VEConfigure).

4.4.6 Salida CA auxiliar (AC-out-2)
Además de la salida ininterrumpida (AC-out-1), hay una segunda salida (AC-out-2) que desconecta su carga en caso de funcionamiento con batería. Por ejemplo: una caldera eléctrica o un aire acondicionado que sólo pueden funcionar si el generador está en marcha o hay corriente de pantalán.
En caso de funcionamiento con batería, AC-out-2 se desconectaría inmediatamente. Una vez dispongamos de nuevo de CA, AC-out-2 se volvería a conectar, con un lapso de unos 2 minutos que permite al generador estabilizarse antes de conectar una carga fuerte.

4.4.7 Conexión de Quattros en paralelo (ver apéndice C)
El Quattro puede conectarse en paralelo con varios dispositivos idénticos. Para ello se establece una conexión entre los dispositivos mediante cables RJ45 UTP estándar. El sistema (uno o más Quattros y un panel de control opcional) tendrá que configurarse posteriormente (ver Sección 5).
En el caso de conectar las unidades Quattro en paralelo, debe cumplir las siguientes condiciones:
- Un máximo de seis unidades conectadas en paralelo.
- Sólo deben conectarse en paralelo dispositivos idénticos con la misma potencia nominal.
- La capacidad de la batería debe ser suficiente.
- Los cables de conexión CC a los dispositivos deben tener la misma longitud y sección.
- Si se utiliza un punto de distribución CC negativo y otro positivo, la sección de la conexión entre las baterías y el punto de distribución CC deberá ser al menos igual a la suma de las secciones requeridas de las conexiones entre el punto de distribución y las unidades Quattro.
- Coloque las unidades Quattro juntas, pero deje al menos 10 cm para ventilación por debajo, encima y junto a las unidades.
- Los cables UTP deben conectarse directamente desde una unidad a la otra (y al panel remoto). No se permiten cajas de conexión/distribución.
- El sensor de temperatura de la batería sólo tiene que conectarse a una unidad del sistema. Si hay que medir la temperatura de varias baterías también se pueden conectar los sensores de otras unidades Quattro del sistema (con un máximo de un sensor por Quattro). La compensación de temperatura durante la carga de la batería responde al sensor que indique la máxima temperatura.
- El sensor de tensión debe conectarse al maestro (ver Sección 5.5.1.4).
- Sólo se puede conectar al sistema un dispositivo de control remoto (panel o conmutador).

4.4.8 Configuración trifásica (ver apéndice C)
El Quattro también puede utilizarse en una configuración trifásica griega (Y). Para ello, se hace una conexión entre dispositivos mediante cables RJ45 UTP estándar (igual que para el funcionamiento en paralelo). El sistema (Quattros y un panel de control opcional) tendrá que configurarse posteriormente (ver Sección 5).
Requisitos previos: ver Sección 4.4.7.
Nota: El Quattro no es adecuado para una configuración trifásica delta (Δ).
5. CONFIGURACIÓN

- Este producto debe modificarlo exclusivamente un ingeniero eléctrico cualificado.
- Lea las instrucciones atentamente antes de implementar los cambios.
- Durante el ajuste del cargador el fusible CC de las conexiones de la batería debe retirarse.

5.1 Valores estándar: listo para usar

El Quattro se entrega con los valores estándar de fábrica. Por lo general, estos valores son adecuados para el funcionamiento de una unidad.
Por tanto no hay que modificarlos en caso de uso autónomo.

Aviso: ¡Puede que la tensión estándar de carga de la batería no sea adecuada para sus baterías! ¡Consulte la documentación del fabricante o al proveedor de la batería!

<table>
<thead>
<tr>
<th>Valores estándar de fábrica del Quattro</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia del inversor</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Rango de frecuencia de entrada</td>
<td>45 - 65 Hz</td>
</tr>
<tr>
<td>Rango de tensión de entrada</td>
<td>180 - 265 VCA</td>
</tr>
<tr>
<td>Tensión del inversor</td>
<td>230 VCA</td>
</tr>
<tr>
<td>Autónomo/Paralelo/Trifásico</td>
<td>autónomo</td>
</tr>
<tr>
<td>AES (commutador de ahorro automático)</td>
<td>off</td>
</tr>
<tr>
<td>Relé de puesta a tierra</td>
<td>on</td>
</tr>
<tr>
<td>Cargador on/off</td>
<td>on</td>
</tr>
<tr>
<td>Características de carga</td>
<td>variable de cuatro etapas con modo BatterySafe</td>
</tr>
<tr>
<td>Corriente de carga</td>
<td>75% de la corriente de carga máxima</td>
</tr>
<tr>
<td>Tipo de batería</td>
<td>Victron Gel Deep Discharge (también adecuada para Victron AGM Deep Discharge)</td>
</tr>
<tr>
<td>Carga con ecualización automática</td>
<td>off</td>
</tr>
<tr>
<td>Tensión de absorción</td>
<td>14,4 / 28,8 / 57,6 V</td>
</tr>
<tr>
<td>Tiempo de absorción</td>
<td>hasta 8 horas (según el tiempo de carga inicial)</td>
</tr>
<tr>
<td>Tensión de flotación</td>
<td>13,8 / 27,6 / 55,2 V</td>
</tr>
<tr>
<td>Tensión de almacenamiento</td>
<td>13,2V (no ajustable)</td>
</tr>
<tr>
<td>Tiempo de absorción repetida</td>
<td>1 hora</td>
</tr>
<tr>
<td>Intervalo de repetición de absorción</td>
<td>7 días</td>
</tr>
<tr>
<td>Protección de carga inicial</td>
<td>on</td>
</tr>
<tr>
<td>Generador (AC-in-1) / corriente de pantalán (AC-in-2)</td>
<td>50A/16A (= límite de corriente ajustable para las funciones PowerControl y PowerAssist)</td>
</tr>
<tr>
<td>Función SAI</td>
<td>on</td>
</tr>
<tr>
<td>Limitador de corriente dinámico</td>
<td>off</td>
</tr>
<tr>
<td>WeakAC</td>
<td>off</td>
</tr>
<tr>
<td>BoostFactor</td>
<td>2</td>
</tr>
<tr>
<td>Relé programable</td>
<td>función de alarma</td>
</tr>
<tr>
<td>PowerAssist</td>
<td>on</td>
</tr>
</tbody>
</table>

5.2 Explicación de los ajustes

A continuación se describen brevemente los ajustes que necesitan explicación. Para más información consulte la ayuda en pantalla de los programas de configuración de software (ver Sección 5.3).

Frecuencia del inversor
Frecuencia de salida si no hay CA en la entrada.
Ajustabilidad: 50Hz; 60Hz

Rango de frecuencia de entrada
Rango de frecuencia de entrada aceptado por Quattro. El Quattro sincroniza en este rango con la tensión presente en AC-in-1 (entrada prioritaria) o AC-in-2. Una vez sincronizado, la frecuencia de salida será igual a la frecuencia de entrada.
Ajustabilidad: 45 – 65 Hz; 45 – 55 Hz; 55 – 65 Hz

Rango de tensión de entrada
Rango de tensión aceptado por Quattro. El Quattro sincroniza en este rango con la tensión presente en AC-in-1 (entrada prioritaria) o en AC-in-2. Una vez cerrado el relé de retroalimentación, la tensión de salida será igual a la de entrada.
Ajustabilidad: Límite inferior: 180 – 230V
Límite superior: 230 – 270 V

Nota: la configuración mínima estándar de 180V está pensada para su conexión a una red eléctrica con poca potencia, o a un generador con una salida CA inestable. Esta configuración podría provocar un apagón del sistema al conectarlo a un "generador CA sincrónico sin escobillas, autoexcitado, regulado por tensión externa" (generador AVR sincróno). La mayoría de los generadores de 10kVA o más son generadores AVR sincrónos. El apagón se inicia cuando se detiene el generador y baja de revoluciones, mientras el AVR "intenta" simultáneamente mantener la tensión de salida del generador a 230 V.
La solución es incrementar el límite inferior a 210 VCA (la salida de los generadores AVR es generalmente muy estable), o desconectar el(s) Multi(s) del generador cuando se oye la señal de parada del generador (con la ayuda de un contactor CA instalado en serie con el generador).
Tensión del inversor

Tensión de salida del Quattro funcionando con batería.
Ajustabilidad: 210 – 245V

Funcionamiento autónomo/paralelo/ajuste bi-trifásico

Con varios dispositivos se puede:
- aumentar la potencia total del inversor (varios dispositivos en paralelo)
- crear un sistema de fase dividida (sólo para unidades Quattro con tensión de salida de 120 V)
- crear un sistema trifásico.

Para ello los dispositivos se deben conectar mutuamente con cables RJ45 UTP. Los valores estándar de los dispositivos sin embargo permiten a cada dispositivo funcionar de forma autónoma. Por tanto es necesario volver a configurar los dispositivos.

AES (conmutador de ahorro automático)

Si este parámetro está activado, el consumo de energía en funcionamiento sin carga y con carga baja disminuye aproximadamente un 20%, "estrechando" ligeramente la tensión sinusoidal. No ajustable con conmutadores DIP. Sólo aplicable para configuración autónoma.

Modo de búsqueda

Además del modo AES, también se puede seleccionar el modo de búsqueda (sólo con la ayuda del VEConfigure).
Si el modo de búsqueda está activado, el consumo en funcionamiento sin carga disminuye aproximadamente un 70%. En este modo el Quattro, cuando funciona en modo inversor, se apaga si no hay carga, o si hay muy poca, y se vuelve a conectar cada dos segundos durante un breve periodo de tiempo. Si la corriente de salida excede un nivel preestablecido, el inversor seguirá funcionando. En caso contrario, el inversor volverá a apagarse.
Los niveles de carga "shut down" (apagar) y "remain on" (permanecer encendido) del Modo de Búsqueda pueden configurarse con el VEConfigure.
Los ajustes estándar son:
- Apagar: 40 Vatios (carga lineal)
- Encender: 100 Vatios (carga lineal)
No ajustable con conmutadores DIP. Sólo aplicable para configuración autónoma.

Relé de puesta a tierra (ver apéndice B)

Con este relé (H), el conductor neutro de la salida CA se pone a tierra con la carcasa cuando los relés de seguridad de retroalimentación de las entradas AC-in-1 y AC-in-2 están abiertos. Esto garantiza un funcionamiento correcto de los interruptores de fugas a tierra de las salidas.
Si se necesita una salida sin puesta a tierra durante el funcionamiento del inversor, esta función debe desactivarse. (Ver también sección 4.5)
No ajustable con conmutadores DIP.
si fuese necesario se puede conectar un relé de puesta a tierra externo (para un sistema de fase dividida con un autotransformador por separado).
Ver apéndice A.

Curva de carga de la batería

El valor estándar es "Variable de cuatro fases con modo BatterySafe". Ver descripción en la Sección 2. Esta es la mejor característica de carga. Consulte las demás características en la ayuda en pantalla de los programas de configuración del software.
El modo "fijo" puede seleccionarse con los conmutadores DIP.

Tipo de batería

El valor estándar es el más adecuado para Victron Gel Deep Discharge, Gel Exide A200, y baterías estacionarias de placa tubular (OPzS). Este valor también se puede utilizar para muchas otras baterías: por ejemplo, Victron AGM Deep Discharge y otras baterías AGM, y muchos tipos de baterías abiertas de placa plana. Con los conmutadores DIP pueden fijarse hasta cuatro tensiones de carga.
Con el VEConfigure la curva de carga puede ajustarse para cualquier tipo de batería (baterías de Níquel Cadmio o de Litio-Ion).

Carga de ecualización automática

Este ajuste está pensado para baterías de tracción de placa tubular. Durante la absorción, la tensión límite se incrementa a 2,83 V/celda (34 V para una batería de 24 V) una vez que la corriente de carga haya bajado a menos del 10% de la corriente máxima establecida.
No ajustable con conmutadores DIP.
Ver "curva de carga para baterías de tracción de placa tubular" en VEConfigure.

Tiempo de absorción

Depende del tiempo inicial (característica de carga variable) para que la batería se cargue de forma óptima. Si se selecciona la característica de carga "fija", el tiempo de absorción será fijo. Para la mayoría de las baterías un tiempo de absorción máximo de ocho horas resulta adecuado. Si se selecciona mayor tensión de absorción para carga rápida (sólo posible con baterías abiertas inundadas), es preferible cuatro horas. Con los conmutadores DIP se puede fijar un tiempo de ocho o cuatro horas. Para las características variables de carga, esto determina el tiempo máximo de absorción.

Tensión de almacenamiento, tiempo de repetición de absorción, intervalo de repetición de absorción

Ver sección 2. No ajustable con conmutadores DIP.

Protección “bulk”

Cuando este parámetro está "on" (activado), el tiempo de carga inicial se limita a 10 horas. Un tiempo de carga mayor podría indicar un error del sistema (p. ej., un cortocircuito de celda de batería). No ajustable con conmutadores DIP.
Límite de corriente de entrada CA-in1 (generador) / AC-in-2 (suministro pantalón/rojo)

Son los ajustes de limitación de corriente en los que se ponen en funcionamiento PowerControl y PowerAssist.

Rango de ajuste del PowerAssist:
- Desde 5,3A hasta 50A para la entrada AC-in-1
- Desde 5,3A hasta 50A para la entrada AC-in-2

Ajuste de fábrica: valor máximo (50A y 16A).

En el caso de las unidades en paralelo, el rango de valores mínimo y máximo debe multiplicarse por la cantidad de unidades conectadas en paralelo.

Función SAI

Si este ajuste está “activado” y la CA de entrada falla, Quattro pasa a funcionamiento de inversor prácticamente sin interrupción. El Quattro se puede utilizar entonces como Sistema de alimentación ininterrumpido (SAI) para equipos cruciales como ordenadores o sistemas de comunicación.

La tensión de salida para algunos grupos generadores pequeños es demasiado inestable y distorsionada para usar este ajuste, Quattro seguiría pasando a funcionamiento de inversor continuamente. Por este motivo este ajuste puede desactivarse. El Quattro responderá entonces con menos rapidez a las desviaciones de tensión en AC-in-1 o AC-in-2. El tiempo de conmutación a funcionamiento de inversor es por tanto algo mayor, pero la mayoría de los equipos (ordenadores, relojes o electrodomésticos) no se ven afectados negativamente.

Recomendación: Desactive la función SAI si el Quattro no se sincroniza o pasa continuamente a funcionamiento de inversor.

Limitador de corriente dinámico

Pensado para generadores, la tensión AC generada mediante un inversor estático (denominado generador “inversor”). En estos generadores, la velocidad de rotación se limita si la carga es baja, de esta forma se reduce el ruido, el consumo de combustible y la contaminación. Una desventaja es que la tensión de salida caerá enormemente o incluso fallará completamente en caso de un aumento súbito de la carga. Sólo puede suministrarse más carga después de que el motor alcance la velocidad normal.

Si este ajuste está “activado”, Quattro empezará a suministrar energía a un nivel de salida de generador bajo y gradualmente permitirá al generador suministrar más, hasta que alcance el límite de corriente establecido. Esto permite al motor del generador alcanzar su régimen normal.

Este parámetro también se utiliza para generadores “clásicos” de respuesta lenta a una variación súbita de la carga.

WeakAC (CA débil)

Una distorsión fuerte de la tensión de entrada puede tener como resultado que el cargador apenas funcione o no funcione en absoluto. Si se activa WeakAC, el cargador también aceptará una tensión muy distorsionada a costa de una mayor distorsión de la corriente de entrada.

Recomendación: Conecte WeakAC si el cargador no carga apenas o en absoluto (lo que es bastante raro). Conecte al mismo tiempo el limitador de corriente dinámico y reduzca la corriente de carga máxima para evitar la sobrecarga del generador si fuese necesario.

Nota: cuando WeakAC está activado, la corriente de carga máxima se reduce aproximadamente un 20%.

No ajustable con conmutadores DIP.

BoostFactor

¡Cambie este ajuste sólo después de consultar a Victron Energy o a un ingeniero cualificado por Victron Energy!

No ajustable con conmutadores DIP.

Tres relés programables

El Quattro dispone de 3 relés programables. Estos relé puede programarse para cualquier tipo de aplicación, por ejemplo como relé de arranque para un grupo generador. Por defecto, el relé de la posición I (ver apéndice A, esquina superior derecha) está en “alarma”.

No ajustable con conmutadores DIP.

Cambio de frecuencia

Cuando los inversores solares están conectados a la salida de un Multi o de un Quattro, el excedente de energía solar se utiliza para recargar las baterías. Una vez alcanzada la tensión de absorción, el Multi o Quattro detendrán el inversor solar cambiando la frecuencia de salida en 1Hz (de 50Hz a 51Hz, por ejemplo). Cuando la tensión de la batería haya caído ligeramente, la frecuencia volverá a su valor normal y los inversores solares volverán a funcionar.

No ajustable con conmutadores DIP.

Monitor de baterías integrado (opcional)

La solución ideal cuando un Multi, o un Quattro, forma parte de un sistema híbrido (generador diesel, inversor/cargadores, batería acumuladora y energía alternativa). El monitor de baterías integrado puede configurarse para arrancar y detener el generador.

- Arrancar cuando se alcance un % de descarga predeterminado, y/o
- arrancar (con una demora preestablecida) cuando se alcance una tensión de la batería predeterminada, y/o
- arrancar (con una demora preestablecida) cuando se alcance un nivel de carga predeterminado.
- Detener cuando se alcance una tensión de la batería predeterminada, o
- detener (con un tiempo de demora preestablecido) una vez completada la fase de carga “bulk”, y/o
- detener (con una demora preestablecida) cuando se alcance un nivel de carga predeterminado.

No ajustable con conmutadores DIP.

Salida CA auxiliar (AC-out-2)

Además de la salida ininterrumpida (AC-out-1), hay una segunda salida disponible (AC-out-2) que desconecta su carga en caso de funcionamiento con batería. Por ejemplo: una caldera eléctrica o un aire acondicionado que sólo pueden funcionar si el generador está en marcha o hay corriente de pantalón.

En caso de funcionamiento con batería, AC-out-2 se desconectará inmediatamente. Una vez dispongamos de nuevo de CA, AC-out-2 se volvería a conectar, con un lapso de unos 2 minutos que permite al generador estabilizarse antes de conectar una carga fuerte.
5.3 Configuración por ordenador
Todos los valores pueden cambiarse con un ordenador o un panel VE.Net (excepto el relé multifuncional y el VirtualSwitch cuando se utiliza VE.Net). Los ajustes más habituales pueden cambiarse mediante conmutadores DIP (ver Sección 5.5).

NOTA:
Este manual es para productos con firmware xxxx400 o superior (siendo x cualquier número)
El firmware puede encontrarse en el microprocesador, una vez retirado el panel frontal.
Es posible actualizar unidades más antiguas, siempre y cuando el mismo número de 7 dígitos empiece por 26 ó 27. Si empezara por 19 ó 20 sería una microprocesador antiguo y no sería posible actualizarlo a 400 o superior.

Para cambiar los parámetros con el ordenador, se necesita lo siguiente:
• Un interfaz USB MK3 (VE.Bus a USB) y un cable RJ45 UTP.
 Como alternativa, se puede usar la interfaz MK2.2b (VE.Bus a RS232) y un cable RJ45 UTP.

5.3.1 Configuración rápida del VE.Bus
VE.Bus Quick Configure Setup es un programa de software con el que los sistemas con un máximo de tres unidades Quattro (funcionamiento en paralelo o trifásico) pueden configurarse de forma sencilla. VEConfigure3 forma parte de este programa.

5.3.2 VE.Bus System Configurator
Para configurar aplicaciones avanzadas y sistemas con cuatro o más unidades Quattro, debe utilizar el software VE.Bus System Configurator. El software puede descargarse gratuitamente en www.victronenergy.com. VEConfigure3 forma parte de este programa.

5.4 Configuración por medio del panel VE.Net
Se necesita un panel VE.Net y un convertidor VE.Net a VE.Bus.
Con VE.Net puede acceder a todos los parámetros, con la excepción del relé multifuncional y el VirtualSwitch.
5.5 Configuración con conmutadores DIP

Introducción
Mediante conmutadores DIP se puede modificar una serie de ajustes (ver Apéndice A, punto M).

Nota: Al modificar ajustes con conmutadores DIP en un sistema conectado en paralelo o de fase dividida/trifásico se debe tener en cuenta que no todos los ajustes son relevantes en todos los Quattros. Esto es debido a que algunos ajustes serán dictados por el maestro o líder. Algunos ajustes sólo son relevantes en el maestro/líder (es decir, no son relevantes en un esclavo o seguidor). Otros ajustes no son relevantes para esclavos, pero lo son para seguidores.

Una nota sobre la terminología empleada:
Un sistema en el que se utiliza más de un Quattro para crear una única fase CA se llama sistema paralelo. En este caso, uno de los Quattros controlará la totalidad de la fase; a este se le llama maestro. Los demás, llamados esclavos, sólo escucharán al maestro para determinar su actuación.

También es posible crear más fases CA (fase dividida o trifásico) con 2 ó 3 Quattros. En este caso el Quattro de la fase L1 se llama líder. El Quattro en la fase L2 (y L3 en su caso) generarán la misma frecuencia CA pero seguirán a L1 con un cambio de fase fija. Estos Quattros se llaman seguidores.

Si se utilizan más Quattros por fase en un sistema de fase dividida o trifásico (por ejemplo 6 Quattros utilizados para crear un sistema trifásico con 2 Quattros por fase), entonces el líder del sistema también es el maestro de la fase L1. Los seguidores en las fases L2 y L3 también asumirán el papel de maestros en las fases L2 y L3. Todos los demás serán esclavos.

Crear sistemas en paralelo o de fase dividida/trifásico debe hacerse con software, ver párrafo 5.3.

CONSEJO: Si no se quiere complicar con que si un Quattro es un maestro/esclavo/seguidor, lo forma más fácil y directa es configurar todos los ajustes de forma idéntica en todos los Quattros.

Procedimiento general:
Encienda Quattro, preferiblemente descargado y sin tensión CA en las entradas. El Quattro funcionará en modo inversor.

Paso 1: Ajuste los conmutadores DIP para:
- limitar la corriente en las entradas de CA. (no relevante en todos los esclavos)
- limitar la corriente de carga. (sólo relevante para el maestro/líder)

Pulse el botón 'Up' durante 2 segundos (el botón superior a la derecha de los conmutadores DIP, ver Apéndice A, punto K) para guardar los cambios realizados. Ahora puede volver a utilizar los conmutadores DIP para aplicar los ajustes restantes (Paso 2).

Paso 2: otros ajustes, use los conmutadores DIP para:
- Tensiones de carga (sólo relevante para maestro/líder)
- Tiempo de absorción (sólo relevante para maestro/líder)
- Limitador de corriente dinámico (no relevante para esclavos)
- Función SAI (no relevante para esclavos)
- Tensión del convertidor (no relevante para esclavos)
- Frecuencia del convertidor (sólo relevante para maestro/líder)

Pulse el botón "Down" (abajo) durante 2 segundos (el botón inferior a la derecha de los conmutadores DIP) para guardar los cambios una vez los haya puesto en la posición correcta.. Puede dejar los conmutadores DIP en las posiciones seleccionadas, de manera que los "otros valores" siempre puedan recuperarse.

Observación:
- Las funciones de los conmutadores DIP se describen por orden descendente. Puesto que el conmutador DIP superior tiene el número mayor (8), las descripciones comienzan con el conmutador número 8.

5.5.1 Paso 1

5.5.1.1 Limitación de la corriente en la entrada CA (por defecto: AC-in-1: 50A, AC-in-2: 16A)

Si la corriente CA de entrada utilizada por el Quattro aumenta (debido a las cargas conectadas y al cargador de baterías) y se dispone a exceder el límite de corriente CA de entrada, el Quattro reducirá en primer lugar su corriente de carga (PowerControl) y a continuación, si fuese necesario, suministrará potencia adicional sacándola de la batería (PowerAssist). De esta manera, el Quattro intentará evitar que la corriente de entrada exceda el límite establecido.

El límite de corriente de AC-in-1 (el generador) puede fijarse en ocho valores diferentes mediante los conmutadores DIP. El límite de corriente de AC-in-2 puede fijarse en dos valores diferentes mediante los conmutadores DIP. Con el panel Multi Control puede fijarse un límite de corriente variable para la entrada AC-in-2.
Procedimiento
AC-in-1 puede fijarse con los conmutadores DIP ds8, ds7 y ds6 (valor predeterminado: 50A).
Procedimiento: ajustar los conmutadores DIP al valor requerido:

<table>
<thead>
<tr>
<th>ds8</th>
<th>ds7</th>
<th>ds6</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

Observación: La potencia nominal continua que especifican los fabricantes de pequeños generadores a veces suele pecar de optimista. En tal caso, el límite de corriente debe establecerse en un valor mucho menor del necesario de acuerdo con las especificaciones del fabricante.

AC-in-2 puede fijarse en dos Pasos usando el conmutador DIP ds5 (valor predeterminado: 16A).
Procedimiento: ajustar ds5 al valor requerido:

<table>
<thead>
<tr>
<th>ds5</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
</tr>
<tr>
<td>on</td>
</tr>
</tbody>
</table>

Más de 30A: con el software VEConfigure o con un panel Digital Multi Control

Importante: Cuando está conectado un panel, el límite de corriente de AC-in-2 viene determinado por el panel y no por los valores almacenados en Quattro.

5.5.1.2 Limitación de la corriente de carga (valor predeterminado 75%)
Para la máxima duración de la batería de plomo-ácido debe aplicarse una corriente de carga de entre un 10 y un 20% de la capacidad en Ah.
Ejemplo: corriente de carga óptima para una bancada de baterías de 24V/500Ah. 50A a 100A.
El sensor de temperatura suministrado automáticamente ajusta la tensión de carga a la temperatura de batería.
Si la carga es rápida y se necesita una corriente mayor:
- el sensor de temperatura suministrado debe ajustarse en la batería, ya que la carga rápida puede llevar a un incremento de temperatura considerable de la bancada de baterías. La tensión de carga se adapta a la temperatura más alta (es decir, reducida) mediante el sensor de temperatura.
- el tiempo de carga inicial será a veces tan corto que un tiempo de absorción fijo será más satisfactorio (tiempo de absorción “fijo”, ver ds5, Paso 2).

Procedimiento
La corriente de carga de la batería puede establecerse en cuatro Pasos, usando los conmutadores DIP ds4 y ds3 (valor predeterminado: 75%).

ds4 ds3
<table>
<thead>
<tr>
<th>off</th>
<th>off</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>on</td>
<td>50%</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>75%</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>100%</td>
</tr>
</tbody>
</table>

Nota: cuando el WeakAC está activado, la corriente de carga máxima se reduce del 100% a aproximadamente el 80%.

5.5.1.3 Los conmutadores DIP ds2 y ds1 no se usan en el paso 1.

NOTA IMPORTANTE:
Si los 3 últimos dígitos del firmware del Multi están en el rango de la centena (número de firmware xxxx1xx (siendo x cualquier número)), entonces ds1 y ds2 se utilizan para configurar el Multi como autónomo, paralelo o trifásico. Por favor consulte el manual correspondiente.
5.5.1.4 Ejemplos

ejemplos de ajustes:

Para guardar los ajustes una vez configurados los valores requeridos: pulse el botón "Up" durante 2 segundos (el botón superior a la derecha de los conmutadores DIP, ver Apéndice A, punto K). Los LED de sobrecarga y batería baja parpadearán para indicar la aceptación de estos valores.

Recomendamos anotar estos valores y guardar la información en un lugar seguro. Ahora se pueden realizar los ajustes restantes con los conmutadores DIP (Paso 2).

5.5.2 Paso 2 Otros ajustes

Los demás ajustes no son pertinentes para los esclavos. Algunos de los ajustes restantes no son relevantes para los seguidores (L2, L3). El líder L1 impone estos valores a todo el sistema. Si un ajuste no es relevante para los dispositivos L2, L3, se indicará explícitamente.

ds8-ds7: Ajuste de tensiones de carga (no relevante para L2, L3)

<table>
<thead>
<tr>
<th>ds8-ds7</th>
<th>Absorción tensión</th>
<th>Flotación tensión</th>
<th>Almacenamiento tensión</th>
<th>Adecuado para</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>14,1</td>
<td>13,8</td>
<td>13,2</td>
<td>Gel Victron Long Life (OPz2V)</td>
</tr>
<tr>
<td></td>
<td>28,2</td>
<td>27,6</td>
<td>26,4</td>
<td>Gel Exide A600 (OPz2V)</td>
</tr>
<tr>
<td></td>
<td>56,4</td>
<td>55,2</td>
<td>52,8</td>
<td>Gel MK battery</td>
</tr>
<tr>
<td>off</td>
<td>14,4</td>
<td>13,8</td>
<td>13,2</td>
<td>Gel Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td>28,8</td>
<td>27,6</td>
<td>26,4</td>
<td>Gel Exide A200</td>
</tr>
<tr>
<td></td>
<td>57,6</td>
<td>55,2</td>
<td>52,8</td>
<td>Victron Deep Discharge</td>
</tr>
<tr>
<td>on</td>
<td>14,7</td>
<td>13,8</td>
<td>13,2</td>
<td>AGM Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td>29,4</td>
<td>27,6</td>
<td>26,4</td>
<td>Baterías de placa tubular (OPzS)</td>
</tr>
<tr>
<td></td>
<td>58,6</td>
<td>55,2</td>
<td>52,8</td>
<td>en modo cíclico</td>
</tr>
<tr>
<td>on</td>
<td>15,0</td>
<td>13,8</td>
<td>13,2</td>
<td>Baterías de placa tubular (OPzS)</td>
</tr>
<tr>
<td></td>
<td>30,0</td>
<td>27,6</td>
<td>26,4</td>
<td>en modo cíclico</td>
</tr>
<tr>
<td></td>
<td>60,0</td>
<td>55,2</td>
<td>52,8</td>
<td></td>
</tr>
</tbody>
</table>

ds6: tiempo de absorción de 8 ó 4 (no relevante para L2, L3) on = 8 horas off = 4 horas

ds5: característica de carga variable (no relevante para L2, L3) on = activa off = inactiva (tiempo de absorción fijo)

ds4: limitador de corriente dinámico on = activo off = inactivo

ds3: función SAI on = activa off = inactiva

ds2: tensión del convertidor on = 230V off = 240V

ds1: frecuencia del convertidor (no relevante para L2, L3) on = 50Hz off = 60Hz (el rango amplio de frecuencias de entrada (45-55 Hz) está en "on" por defecto)

Nota:
- Si "Algoritmo de carga variable" está "on", ds6 ajusta el tiempo máximo de absorción en 8 horas o 4 horas.
- Si "Algoritmo de carga variable" está "off", ds6 ajusta el tiempo de absorción en 8 horas o 4 horas (fijo).
Paso 2: Ejemplos de ajustes
El ejemplo 1 muestra los valores de fábrica (puesto que estos valores se introducen por ordenador, todos los conmutadores DIP de un producto nuevo están desactivados ("off") y no reflejan los ajustes reales del microprocesador).

<table>
<thead>
<tr>
<th>DS-8</th>
<th>DS-7</th>
<th>DS-6</th>
<th>DS-5</th>
<th>DS-4</th>
<th>DS-3</th>
<th>DS-2</th>
<th>DS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión de carga</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>Tiempo absor.</td>
<td>on</td>
<td>on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carga variable</td>
<td>on</td>
<td>on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Función SAI</td>
<td>on</td>
<td>off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión</td>
<td>on</td>
<td>off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia</td>
<td>on</td>
<td>off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para guardar los ajustes una vez configurados los valores requeridos: pulse el botón "Down" durante 2 segundos (el botón inferior a la derecha de los conmutadores DIP). Los LED de temperatura y batería baja parpadearán para indicar la aceptación de estos valores.

Los conmutadores DIP pueden dejarse en las posiciones elegidas para poder recuperar siempre los "otros valores".
6. MANTENIMIENTO
El Quattro no necesita un mantenimiento específico. Bastará con comprobar todas las conexiones una vez al año. Evite la humedad y la grasa, el hollín y el vapor y mantenga limpio el equipo.

7. INDICACIONES DE ERROR

Nota importante:
Cuando la batería está descargada por completo (tensión de la batería inferior a 10V / 20V o 40V), el Quattro empezará a cargar sólo cuando se conecte corriente CA a AC-in-1. Para que el Quattro empiece a cargar cuando la corriente CA está conectada a AC-in-2, la tensión de la batería debe ser superior a 10V / 20V o 40V.

7.1 Indicaciones generales de error
Los siguientes procedimientos permiten identificar rápidamente la mayoría de los errores. Si un error no se puede resolver, consulte al proveedor de Victron Energy.

<table>
<thead>
<tr>
<th>Problema</th>
<th>Causa</th>
<th>Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Quattro no comienza a funcionar</td>
<td>El disyuntor o el fusible en la entrada AC-in está abierto debido a una sobrecarga.</td>
<td>Retire la sobrecarga o el cortocircuito de AC-out-1 o AC-out-2, y reponga el disyuntor/fusible.</td>
</tr>
<tr>
<td>El inversor no se ha puesto en marcha al encenderlo</td>
<td>La tensión de la batería es muy alta o muy baja. No hay tensión en la conexión CC.</td>
<td>Compruebe que la tensión de la batería está en el rango correcto.</td>
</tr>
<tr>
<td>El LED de "batería baja" parpadea.</td>
<td>Baja tensión de la batería.</td>
<td>Cargue la batería o compruebe las conexiones de la misma.</td>
</tr>
<tr>
<td>El LED de "batería baja" se enciende.</td>
<td>El convertidor se apaga porque la tensión de la batería es muy baja.</td>
<td>Cargue la batería o compruebe las conexiones de la misma.</td>
</tr>
<tr>
<td>El LED de "sobrecarga" parpadea.</td>
<td>La carga del convertidor supera la carga nominal.</td>
<td>Reducir la carga.</td>
</tr>
<tr>
<td>El LED de "sobrecarga" se enciende.</td>
<td>El convertidor se paga por exceso de carga.</td>
<td>Reducir la carga.</td>
</tr>
<tr>
<td>El LED "Temperatura" parpadea o se enciende.</td>
<td>La temperatura ambiente es alta o la carga es excesiva.</td>
<td>Instale el convertidor en un ambiente fresco y bien ventilado o reduzca la carga.</td>
</tr>
<tr>
<td>Los LED de "Batería baja" y "sobrecarga" parpadean alternativamente.</td>
<td>Baja tensión de batería y carga excesiva.</td>
<td>Cargue las baterías, desconecte o reduzca la carga o inicie baterías de alta capacidad. Instale cables de batería más cortos o más gruesos.</td>
</tr>
<tr>
<td>Los LED de "Batería baja" y "sobrecarga" parpadean simultáneamente.</td>
<td>La tensión de ondulación en la conexión CC supera 1,5 Vrms.</td>
<td>Compruebe los cables de la batería y las conexiones. Compruebe si la capacidad de la batería es bastante alta y aumentela si es necesario.</td>
</tr>
<tr>
<td>Los LED de "Batería baja" y "sobrecarga" se encienden.</td>
<td>El inversor se para debido a un exceso de tensión de ondulación en la entrada.</td>
<td>Instale baterías de mayor capacidad. Coloque cables de batería más cortos o más gruesos y reinicie el inversor (apagar y volver a encender).</td>
</tr>
<tr>
<td>Un LED de alarma se enciende y el segundo parpadea.</td>
<td>El inversor se para debido a la activación de la alarma por el LED que se enciende. El LED que parpadea indica que el inversor se va a apagar debido a esa alarma.</td>
<td>Compruebe en la tabla las medidas adecuadas relativas a este estado de alarma.</td>
</tr>
<tr>
<td>El cargador no funciona.</td>
<td>La tensión de entrada CA o frecuencia no están en el rango establecido.</td>
<td>Compruebe que el valor CA está entre 165 VCA y 265 VCA, y que la frecuencia está en el rango establecido (valor predeterminado 45-65 Hz).</td>
</tr>
<tr>
<td>El disyuntor o el fusible en la entrada AC-in está abierto debido a una sobrecarga.</td>
<td>Retire la sobrecarga o el cortocircuito de AC-out-1 o AC-out-2, y reponga el disyuntor/fusible.</td>
<td></td>
</tr>
<tr>
<td>El fusible de la batería se ha fundido.</td>
<td>Cambiar el fusible de la batería.</td>
<td></td>
</tr>
<tr>
<td>La distorsión de la tensión de entrada CA es demasiado grande (generalmente alimentación de generador).</td>
<td>Active los valores WeakAC y limitador de corriente dinámico.</td>
<td></td>
</tr>
<tr>
<td>El cargador no funciona. El LED "Bulk" (carga inicial) parpadea y el LED "Mains on" (red activada) se iluminan.</td>
<td>El Quattro está en modo "Bulk protection" (protección de carga inicial), ya que se ha excedido el tiempo de carga inicial de 10 horas. Un tiempo de carga tan largo podría indicar un error del sistema (p. ej., un cortocircuito de celda de batería).</td>
<td>Compruebe las baterías. NOTA: Puede reiniciar el modo de error apagando y volviendo a encender el Quattro.</td>
</tr>
<tr>
<td>La batería no está completamente cargada.</td>
<td>La corriente de carga es excesivamente alta, provocando una fase de absorción prematura.</td>
<td>Fije la corriente de carga a un nivel entre 0,1 y 0,2 veces la capacidad de la batería.</td>
</tr>
<tr>
<td>Mala conexión de la batería.</td>
<td>Comprobar las conexiones de la batería.</td>
<td></td>
</tr>
<tr>
<td>La tensión de absorción se ha fijado en un nivel incorrecto (demasiado bajo).</td>
<td>Fije la tensión de absorción al nivel correcto.</td>
<td></td>
</tr>
<tr>
<td>El tiempo de absorción disponible es demasiado corto para cargar completamente la batería.</td>
<td>Seleccione un tiempo de carga mayor o una corriente de carga superior.</td>
<td></td>
</tr>
<tr>
<td>Problema</td>
<td>Causa</td>
<td>Solución</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>El tiempo de absorción es demasiado corto. En el caso de carga variable puede deberse a una corriente de carga excesiva respecto a la capacidad de la batería de modo que el tiempo inicial es insuficiente.</td>
<td>Reducir la corriente de carga o seleccione las características de carga "fijas".</td>
<td></td>
</tr>
<tr>
<td>Sobrecarga de la batería.</td>
<td>La tensión de absorción se ha fijado en un nivel incorrecto (demasiado alto).</td>
<td>Fije la tensión de absorción al nivel correcto.</td>
</tr>
<tr>
<td></td>
<td>La tensión de flotación se ha fijado en un nivel incorrecto (demasiado alto).</td>
<td>Fije la tensión de flotación en el nivel correcto.</td>
</tr>
<tr>
<td></td>
<td>Batería en mal estado.</td>
<td>Cambie la batería.</td>
</tr>
<tr>
<td></td>
<td>La tensión de absorción se ha fijado en un nivel incorrecto (demasiado alto).</td>
<td>Fije la tensión de absorción al nivel correcto.</td>
</tr>
<tr>
<td></td>
<td>Batería en mal estado.</td>
<td>Cambie la batería.</td>
</tr>
<tr>
<td></td>
<td>La temperatura de la batería es demasiado alta (por mala ventilación, temperatura ambiente excesivamente alta o corriente de carga muy alta).</td>
<td>Mejorar la ventilación, instalar las baterías en un ambiente más fresco, reducir la corriente de carga y conectar el sensor de temperatura.</td>
</tr>
<tr>
<td>La corriente de carga cae a 0 tan pronto como se inicia la fase de absorción.</td>
<td>La batería está sobrecalentada (>50°C)</td>
<td>Instale la batería en un entorno más fresco</td>
</tr>
<tr>
<td></td>
<td>Incluso la corriente de carga Reduzca la corriente de carga</td>
<td>Compruebe si alguna de las celdas de la batería tiene un cortocircuito interno</td>
</tr>
<tr>
<td></td>
<td>Sensor de temperatura de la batería defectuoso</td>
<td>Desconecte el sensor de temperatura del Quattro. Si la carga funciona bien después de 1 minuto aproximadamente, deberá cambiar el sensor de temperatura.</td>
</tr>
</tbody>
</table>
7.2 Indicaciones especiales de los LED
(consulte en la sección 3.4 las indicaciones normales de los LED)

<table>
<thead>
<tr>
<th>Indicación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los LED “Bulk” y “Absorption” parpadean sincronizadamente (simultáneamente).</td>
<td>Error de la sonda de tensión. La tensión medida en la conexión de la sonda se desvía mucho (más de 7 V) de la tensión de las conexiones negativa y positiva del dispositivo. Probablemente haya un error de conexión. El dispositivo seguirá funcionando normalmente. NOTA: Si el LED “inverter on” parpadea en oposición de fase, se trata de un código de error de VE.Bus (ver más adelante).</td>
</tr>
<tr>
<td>Los LED indicadores de absorción y flotación parpadean sincronizadamente (simultáneamente).</td>
<td>La temperatura de la batería medida tiene un valor bastante improbable. El sensor puede tener defectos o se ha conectado incorrectamente. El dispositivo seguirá funcionando normalmente. NOTA: Si el LED “inverter on” parpadea en oposición de fase, se trata de un código de error de VE.Bus (ver más adelante).</td>
</tr>
<tr>
<td>“Mains on” parpadea y no hay tensión de salida.</td>
<td>El dispositivo funciona en “charger only” y hay suministro de red. El dispositivo rechaza el suministro de red o sigue sincronizando.</td>
</tr>
</tbody>
</table>

7.3 Indicaciones de los LED de VE.Bus

Los inversores incluidos en un sistema VE.Bus (una disposición en paralelo o trifásica) pueden proporcionar indicaciones LED VE.Bus. Estas indicaciones LED pueden dividirse en dos grupos: Códigos correctos y códigos de error.

7.3.1 Códigos correctos VE.Bus
Si el estado interno de un dispositivo está en orden pero el dispositivo no se puede poner en marcha porque uno o más de los dispositivos del sistema indica un estado de error, los dispositivos que están correctos mostrarán un código OK. Esto facilita la localización de errores en el sistema VE.Bus ya que los dispositivos que no necesitan atención se identifican fácilmente.

Importante: ¡Los códigos OK sólo se mostrarán si un dispositivo no está en modo inversor o cargador!

- Un LED “bulk” intermitente indica que el dispositivo puede realizar la función del inversor.
- Un LED “float” intermitente indica que el dispositivo puede realizar la función de carga.

NOTA: En principio, todos los demás LED deben estar apagados. Si no es así, el código no es un código OK. No obstante, pueden darse las siguientes excepciones:

- Las indicaciones especiales de los LED pueden darse junto a códigos OK.
- El LED “low battery” puede funcionar junto al código OK que indica que el dispositivo puede cargar.

7.3.2 Códigos de error VE.Bus
Un sistema VE.Bus puede mostrar varios códigos de error. Estos códigos se muestran con los LED “inverter on”, “bulk”, “absorption” y “float”.

Para interpretar un código de error VE.Bus correctamente, debe seguirse este procedimiento:
1. El dispositivo deberá registrar un error (sin salida CA).
2. ¿Parpadea el LED “inverter on”? En caso negativo, el código no es un código de error VE.Bus.
3. Si uno o varios de los LED “bulk”, “absorption” o “float” parpadea, entonces debe estar en oposición de fase del LED “inverter on”, es decir, los LED que parpadean están desconectados si el LED “inverter on” está encendido, y viceversa. Si no es así, el código no es un código de error VE.Bus.
4. Compruebe el LED “bulk” y determine cuál de las tres tablas siguientes debe utilizarse.
5. Seleccione la fila y la columna correctas (dependiendo de los LED “absorption” y “float”) y determine el código de error.
6. Determine el significado del código en las tablas siguientes.
13. El dispositivo registra un error! (Sin salida CA)
14. El LED del inversor parpadea (al contrario que los demás LED: “bulk”, “absorption” o “float”)
15. Al menos uno de los LED “bulk”, “absorption” y “float” está encendido o parpadeando

LED Bulk off

<table>
<thead>
<tr>
<th>LED Absorption</th>
<th>LED de flotación</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>0 3 6</td>
</tr>
<tr>
<td>parpadea</td>
<td>1 4 7</td>
</tr>
<tr>
<td>on</td>
<td>2 5 8</td>
</tr>
</tbody>
</table>

LED Bulk parpadea

<table>
<thead>
<tr>
<th>LED Absorption</th>
<th>LED de flotación</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>9 12 15</td>
</tr>
<tr>
<td>parpadea</td>
<td>10 13 16</td>
</tr>
<tr>
<td>on</td>
<td>11 14 17</td>
</tr>
</tbody>
</table>

LED Bulk on

<table>
<thead>
<tr>
<th>LED Absorption</th>
<th>LED de flotación</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>18 21 24</td>
</tr>
<tr>
<td>parpadea</td>
<td>19 22 25</td>
</tr>
<tr>
<td>on</td>
<td>20 23 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED “bulk”</th>
<th>Código</th>
<th>Significado:</th>
<th>Causa/solución:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>El dispositivo está apagado porque ninguna de las otras fases del sistema se ha desconectado.</td>
<td>Compruebe la fase que falla.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>No se encontraron todos los dispositivos, o más de los esperados, en el sistema.</td>
<td>El sistema no está bien configurado. Reconfigurar el sistema.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>No se ha detectado otro dispositivo.</td>
<td>Compruebe los cables de comunicaciones.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Sobretensión en AC-out.</td>
<td>Compruebe los cables CA.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Se ha producido un problema de sincronización del tiempo del sistema.</td>
<td>No debe ocurrir si el equipo está bien instalado. Compruebe los cables de comunicaciones.</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>El dispositivo no puede transmitir datos.</td>
<td>Compruebe los cables de comunicaciones (puede haber un cortocircuito).</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Uno de los dispositivos ha asumido el papel de “maestro” porque el original ha fallado.</td>
<td>Compruebe la unidad que falla. Compruebe los cables de comunicaciones.</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Se ha producido una sobretensión.</td>
<td>Compruebe los cables CA.</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Este dispositivo no puede funcionar como “esclavo”.</td>
<td>Este dispositivo es un modelo obsoleto e inadecuado. Debe cambiarse.</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Se ha iniciado la protección del sistema de conmutación.</td>
<td>No debe ocurrir si el equipo está bien instalado. Apague todos los equipos y vuelva a encenderlos. Si el problema se repite, compruebe la instalación. Solución posible: incrementar el límite inferior de la tensión CA de entrada a 210 V (ajuste de fábrica: 180 V)</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Incompatibilidad de firmware, El firmware de uno de los dispositivos conectados no está actualizado para funcionar con este dispositivo.</td>
<td>1) Apague todos los equipos. 2) Encienda el dispositivo que mostraba este error. 3) Encienda los demás dispositivos uno a uno hasta que vuelva a aparecer el mensaje de error. 4) Actualice el firmware del último dispositivo que estuvo encendido.</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Error interno.</td>
<td>No debe ocurrir. Apague todos los equipos y vuelva a encenderlos. Póngase en contacto con Victron Energy si el problema persiste.</td>
</tr>
</tbody>
</table>

Solución posible: incrementar el límite inferior de la tensión CA de entrada a 210 V (ajuste de fábrica: 180 V)
8. ESPECIFICACIONES TÉCNICAS

<table>
<thead>
<tr>
<th>Quattro</th>
<th>12/3000/120-50/50 230V</th>
<th>24/3000/70-50/50 230V</th>
<th>48/3000/35-50/50 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerControl / PowerAssist</td>
<td>Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conmutador de transferencia integrado</td>
<td>Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 entradas CA</td>
<td>Rango de tensión de entrada: 187-285 VCA</td>
<td>Frecuencia de entrada: 45 – 65 Hz</td>
<td>Factor de potencia: 1</td>
</tr>
<tr>
<td>Corriente máxima de alimentación (A)</td>
<td>AC-in-1: 50A</td>
<td>AC-in-2: 50A</td>
<td></td>
</tr>
<tr>
<td>Corriente mínima para PowerAssist (A)</td>
<td>AC-in-1: 5,3A</td>
<td>AC-in-2: 5,3A</td>
<td></td>
</tr>
</tbody>
</table>

INVERSOR
- **Rango de tensión de entrada (VCC):** 9,5 – 17 V a 19 – 33 V a 38 – 66 V
- **Tensión de salida:** 230 V ± 2%
- **Frecuencia:** 50 Hz ± 0,1%
- **Potencia cont. de salida a 25ºC (VA):** 3000
- **Potencia cont. de salida a 40ºC (W):** 2200
- **Potencia cont. de salida a 65ºC (W):** 1700
- **Pico de potencia (W):** 6000
- **Factor de potencia (VA):** 94
- **Consumo en vacío (W):** 8
- **Consumo en vacío en modo de ahorro (W):** 10

CARGADOR
- **Tensión de carga de 'absorción' (V CC):** 14,4 V a 28,8 V a 57,6 V
- **Tensión de carga de "flotación" (V CC):** 13,8 V a 27,6 V a 55,2 V
- **Modo de almacenamiento (VCC):** 13,2 V a 26,4 V a 52,8 V
- **Corriente de carga de la batería auxiliar (A):** 120
- **Corriente de carga de la batería de arranque (A):** 4

GENERAL
- **Salida CA auxiliar:** Carga máxima: 25A Se detiene cuando está en modo inversor
- **Relé programable (5):** Si
- **Protección (2):** a - g
- **Características comunes:** Temp. de trabajo: -40 a 65°C (refrigerado por aire) Humedad (sin condensación): máx. 95%

CARCASA
- **Características comunes:** Material y color: aluminio (azul RAL 5012) Protección: IP 21
- **Conexión de la batería:** Cuatro pernos M8 (2 conexiones positivas y 2 negativas)
- **Conexión 230 V CA:** Bornes de tornillo de 13 mm2 (6 AWG)
- **Peso (kg):** 19
- **Dimensiones (al x an x p en mm.):** 362 x 258 x 218

ESTÁNDARES
- **Seguridad:** EN 60335-1, EN 60335-2-29
- **Emisiones/Normativas:** EN 55014-1, EN 55014-2, EN 61000-3-3

1) Puede ajustarse a 60Hz y a 240V
2) Protección
 a. Cortocircuito de salida
 b. Sobrecarga
 c. Tensión de la batería demasiado alta
 d. Tensión de la batería demasiado baja
 e. Temperatura demasiado alta
 f. 230 VCA en salida del inversor
 g. Ondulación de la tensión de entrada

3) Carga no lineal, factor de cresta 3:1
4) A 25°C temp. ambiente
5) Relé programable que puede ajustarse como alarma general, subtensión CC o señal de arranque/parada del generador
 Capacidad nominal CA: 230V/4A
OBS:
Denna manual gäller produkter med programvariant xxxx400 eller högre (med x menas vilket nummer som helst)
Programnumret går att utläsa på mikroprocessorn, efter att frontpanelen har tagits bort.
Det är möjligt att uppdatera äldre enheter om det sjusiffriga numret börjar på 26 eller 27. Om det börjar på 19 eller 20 har du en
gammal mikroprocessor och det är inte möjligt att uppdatera till 400 eller högre.

1. SÄKERHETSSINSTRUKTIONER

Allmänt

Var vänlig läs dokumentationen och all dokumentation som medföljer denna produkt först, så att du är bekant med säkerhetsanvisningar och
instruktioner innan du använder produkten.

Programmen är utvecklade och testad i enlighet med internationella standarder. Utrustningen bör endast användas för sitt avsedda
användningsområde.

VARING: FARA FÖR ELEKTRISKA STÖTAR

Produkten används i kombination med en permanent strömkälla (batteri). Även om utrustningen är avstängd kan en farlig
elektrisk spänning förekomma vid ingångs- och/eller utgångspoleerna. Stäng alltid av växelströmmen och koppla ur batteriet
innan du utför underhållsarbeten.

Produkten innehåller inga interna delar som kan underhållas av användaren. Avlägsna inte frontpanelen och använd inte
produkten om inte alla paneler är monterade. Allt underhåll bör utföras av utbildad personal.

Kom ihåg att produkten på platser där gas- eller dammexplosioner kan inträffa. Kontrollera batteritillverkarens instruktioner för
att säkerställa att batteriet passar för användning med denna produkt. Batteritillverkarens säkerhetsinstruktioner bör alltid
respekteras.

VARING: lyft inte tunga föremål på egen hand.

Installation

Läs installationsinstruktionerna innan du påbörjar installationsarbetet.

Denna produkt är en enhet av säkerhetsklass I (levereras med en jordterminal av säkerhetsskäl). Växelströmingången
och/eller utgångsterminaler måste utrustas med permanent jordning av säkerhetsskäl. En extra jordningspunkt
återfinns på produkts utsida. Om man har skäl att misstänka att jordningsskyddet är skadat, bör produkten tas ur drift och
skyddas från drift av misstag igen; kontakta utbildad underhållspersonal.

Säkerställ att anslutningskablarna är försedda med säkringar och strömbrytare. Ersätt aldrig en skyddsanordning med en
komponent av ett annat slag. Se bruksanvisningen för korrekt reservdel.

Innan du slår på enheten, kontrollera att tillgängliga anslutningsställen är klar för anslutningsställen för
produkten i enlighet med vad som beskrivs i bruksanvisningen.

Säkerställ att utrustningen används under korrekt användningsförhållanden. Använd aldrig produkten i fuktiga eller dammiga
miljöer.

Säkerställ att det alltid finns tillräckligt fritt utrymme runt produkten för ventilation och att ventilationsöppningarna inte är
blockerade.

Installera produkten i en värme- och dammskyddad miljö. Säkerställ därför att det inte finns några kemikalier, plastdelar, gardiner eller
andra textilier m.m. i utrustningens omedelbara närhet.

Transport och förvaring

Vid förvaring eller transport av S-produkten, säkerställ att nätsladden och batterikablarna är urkopplade.

Inget ansvar kommer att accepteras för skador under transport om utrustningen inte transporteras i sin originalförpackning.

Förvara produkten i en torr miljö; förvaringstemperaturen bör vara inom intervallet –20 °C till 60 °C.

Se batteritillverkarens bruksanvisning för information om transport, förvaring, laddning, uppladdning och bortskaffning av
batteriet.
2. BESKRIVNING

2.1 Allmänt

De grundläggande funktionerna för Quattro är att det är en extremt kraftfull sinusväxelriktare, batteriladdare och automatisk switch i ett kompakt h高出
Quattro erbjuder följande extra och ofta unika egenskaper:

Två AC-ingångar; integrerade switch-over-system mellan landström och generatorset

Två AC-utgångar
Förutom den normala avbrottsfria utgången(AC-out-1), finns en hjälputgång (AC-out-2) tillgänglig som kopplar bort sin belastning i händelse av batteridrift. Exempel: en elektrisk varmvattenberedare som endast får fungera om generatorn är i drift eller om landström finns tillgängligt.

Automatisk och avbrottsfri omkoppling
I händelse av ett strömavbrott eller när generatorn stängs av, kommer Quattro att växla över till växeldrift och ta över försörjningen till anslutna enheter. Detta görs så snabbt att drift av datorer och andra elektroniska enheter inte störs (avbrottsfri strömförsörjning eller UPS-funktion). Detta gör att Quattro passar utmärkt som nödströmsystem inom industri eller telekommunikation. Den maximala AC-strömmen som kan kopplas om är 30A.

Trefaskapacitet
Tre enheter kan konfigureras för trefasutgång. Men det är inte allt: upp till 6 set med tre enheter kan parallellkopplas för att tillhandahålla 45 kW / 54 kVA utefekt och mer än 1200A laddningskapacitet.

PowerControl – maximal användning av begränsad landström
Quattro kan tillhandahålla en enorm laddningsström. Detta förutsätter tung belastning för landanslutning eller generator. För båda AC-ingångarna, kan därför en maxström ställas in. Quattro tar sedan med andra strömanvändare i beräkningen och använder endast 'överskott' ström i laddningsfyllnadsfaser.

- Ingång AC-in-1, till vilken normalt en generator är ansluten, kan ställas in ett fast max med DIP-switchar, med VE.Net eller med en dator, så att generatorn aldrig överbelastas.

PowerAssist – Längre användning av din generator och landström: Quattros “stödförsörjnings”-funktion
Quattro fungerar parallellt med generatoren eller landanslutningen. Ett strömunderskott kompenseras av Quattro: det drar extra ström från batteriet och hjälper till. Ett strömöverskott används för att ladda upp batteriet.

Denna unika funktion erbjuder en definitiv lösning på "landströmsproblem": elektriska verktyg, diskmaskiner, tvättmaskiner, elektriska spisar, m.m. kan alltid köras med 16 A landström, eller till och med mindre. Dessutom kan en mindre generatör installeras.

Tre programmerbara reläer
Quattro är utrustad med tre programmerbara reläer. Reläerna kan dock programmeras för alla möjliga andra användningsområden, till exempel som ett startrelä för en generator.

Två programmerbara analoga/digitala ingångar/utgångsportar.

Frekvensändring
När solcellsomvandlare är kopplade till utgångsporten på en Multi eller Quattro används överskottsenergin för att ladda batterierna. När strömmenspänningen uppnås stänger Multi eller Quattro av solcellsomvandlaren genom att ändra utgångsfrekvensen med 1 Hz (från 50 Hz till 51 Hz till exempel). När batterispänningen har minskat något återgår frekvensen till normalfrekvens och solcellsomvandlarna startar på nytt.

Inbyggd batteriövervakare (valfritt)
Det är en perfekt lösning om din Multi- eller Quattro-enhet är del av ett hybridsystem (t.ex. en dieselmotor, växelriktare/laddare, förvaringsbatteri och alternativa energikällor). Den inbyggda batteriövervakaren kan ställas in för att starta eller stänga av generatormotor:

- Starta vid en förinställd % urladdningsnivå, och/eller
- starta (med en förinställd fördöjning) vid en förinställd batterispänning, och/eller
- starta (med en förinställd föröjning) vid en förinställd belastningsnivå.

- Stängas av vid en förinställd batterispänning, eller
- stängas av (med en förinställd fördöjning) efter att bulkladningsfasen har avslutats, och/eller
- stängas av (med en förinställd fördöjning) vid en förinställd belastningsnivå.

Solenergi
Quattro passar utmärkt för solenergisystem. Den kan användas för att bygga självförsörjande system såväl som nättanslutna system.
Nödström eller självförsörjande drift vid felande nätström

Programmerbar med DIP-switchar, VE.Net-panel eller persondator
Quattro levereras redo att användas. Tre funktioner är tillgängliga för att ändra vissa inställningar om så önskas: De viktigaste inställningarna (inkluderar parallell drift av upp till tre enheter och 3-fasdrift) kan ändras på ett väldigt enkelt sätt, med hjälp av Quattro DIP-switchar.
- All inställningar, men undantag av det multifunktionella reläet, kan ändras med en VE.Net-panel.
- Alla inställningar kan ändras med en dator och gratis programvara, som går att ladda ner från vår hemsida, www.victronenergy.com

2.2 Batteriladdare
Anpassningsbar 4-stegsladdningsfunktion: bulk- absorption - float - förvaring.
Det mikroprocessorstyrd anpassningsbara batterihanteringssystemet kan justeras för olika typer av batterier. Anpassningsfunktionen anpassar automatiskt laddningsprocessen till batterianvändningen.
Rätt mängd laddning: Variabel absorptionstid
I händelse av lått batteriladdning hålls absorptionen kort för att förhindra överladdning och för hög gasbildning. Efter djup urladdning förlängs absorptionstiden automatiskt för att ladda upp batteriet fullständigt.
Förhindra skador på grund av för hög gasning: BatterySafe-läge
Om en hög gasnингstid har valts för att snabbt ladda upp ett batteri, kommer enheten att förhindra skador orsakade av för hög gasutveckling genom att automatiskt begränsa hastigheten för spänningssläpning så snart som gasnингen har uppnåtts.
Mindre underhåll och åldrande när batteriet inte används: Förvaringsläge
Förvaringsläget aktiveras alltid när batteriet inte har utsatts för urladdning under 24 timmar. I förvaringsläget reduceras floatspänningen till 2,2 V (13,2 V för 12 V-batterier) för att minimera gasn킹 och korrosion av de positiva elektroderna. En gång i veckan höjs spänningen tillbaka till absorptionssläppn ing för att "utjämma" batteriet. Denna funktion förhindrar avlagringar av elektroyt och sulfatering, en av huvudorsakerna för alltför tidiga batterifel.
Två DC-utgångar för laddning av två batterier
Den huvudsakliga DC-terminalen kan tillhandahålla fullständig utgångsström. Den andra utgången är avsedd för laddning av ett startbatteri och är begränsad till 4 A och har en något lägre utgångsspänning.
Att öka batteriets livslängd: temperaturkompensation
Temperatursensorn (som medföljer produkten) har som uppgift att reducera laddninngssläppningen när batteritemperaturen stiger. Detta är särskilt viktigt för underhållsfria batterier som annars kan torka ut på grund av överladdning.
Batterispänningssensor: korrekt laddninngssläppning
Spänningssläpning på grund av kabelmotstånd kan kompenseras genom att använda spänningssensorn för att mäta spänningen direkt på DC-bussen eller på batteriterminalerna.
Mer om batterier och laddning

2.3 Egenkonsumtion - lagringssystem för solenergi
För mer information se vår vitbok om Self Consumption or Grid independence with the Victron Energy Storage Hub.
Lämplig programvara kan laddas ner från vår webbplats

Om den lokala nätkoden inte stöds av Multi/Quattro ska en extern certifierad gränssnittenhet användas för att ansluta Multi/Quattro till nätet.
Multi/Quattro-enheten kan även användas som en dubbelriktad växelriktare som arbetar parallellt med nånet som en integrerad del i ett kundanpassat system (PLC eller annat) som sköter kretskontroll och nätmätning, se http://www.victronenergy.com/live/system_integration:hub4_grid_parallel
3. ANVÄNDNING

3.1 "På / viloläge / endast laddning"-brytaren

När brytaren ställs in till "på", är produkten fullt funktionsduglig. Växelriktaren kommer att aktiveras och LED-dioden "växelriktare på" kommer att tändas.

En växelströmspänning ansluten till "AC in"-terminalen kommer att växelriktas genom LED-dioden "nätström på" kommer att tändas och laddaren kommer att påbörja laddningen. LED-dioderna "bulk", "absorption" eller "float" kommer att tändas, beroende på laddningsläget. Om spänningen vid "AC in"-terminalen inte accepteras kommer växelriktaren att slås på.

När brytaren är inställd på "endast laddning", kommer endast Quattros batteriladdare att fungera (om nätspänning finns). I detta läge växlas ingångsspänningen även genom "AC out"-terminalen.

OBS: Se till att brytaren är inställd på "endast laddare" när endast laddningsfunktionen behövs. Detta förhindrar växelriktaren från att slås på om nätspänninng förloras, vilket förhindrar att dina batterier töms helt.

3.2 Fjärrkontroll

Fjärrstyrning är möjlig med en 3-vågsswitch eller med en MultiControl-panel. MultiControl-panelen har en enkel vridknapp där den maximala strömmen för AC-inmatning kan ställas in: (hänvisning till PowerControl och PowerAssist i avsnitt 2).

3.3 Utjämning och forcerad absorption

3.3.1 Utjämning

Utjämningsläget tillhandahåller en högre laddningsspänning än vad de flesta likströmsapparater kan hantera. Dessa apparater måste kopplas bort innan extra laddning genomförs.

3.3.2 Forcerad absorption

Under vissa omständigheter kan det vara önskvärt att ladda batteriet under en bestämd tid vid absorptionsspänningsnivå. I forcerat absorptionsläge kommer Quatto att ladda vid normal absorptionsspänningsnivå under den inställda maximala absorptionstiden. LED-dioden "absorption" tänds.

3.3.3 Aktivering av utjämning och forcerad absorption

Quattro kan ställas in i båda dessa lägen från fjärrpanelen såväl som med frontpanelbrytaren, under förutsättning att alla brytare (front, fjärr och panel) är inställda till "på". För att aktivera "bulk", "absorption" eller "float" bör nedanstående procedur följas.

OBS: Att vrida från "on" till "endast laddare" och tillbaka, enligt vad som beskrivs nedan, måste göras snabbt och mäktigt. Brytaren måste vridas så att mellanpositionen "tappas över", som den var. Om brytaren förblir i "av"-positionen även under en kort tid kan det hända att enheten stängs av. Om detta inträffar måste hela rutinen startas om från steg 1 En viss grad av förtrogenhet krävs när du använder frontbrytaren, särskilt på Compact-enheten. När man använder fjärrpanelen har det mindre betydelse.

Procedur:

1. Kontrollera huruvida alla brytare (d.v.s. frontbrytare, fjärrbrytare eller fjärrpanelbrytaren om en sådan finns) befinner sig i "på"-läge.
2. Aktivering av utjämning eller forcerad absorption är endast meningsfull om den normala laddningscykeln är avslutad (laddaren befinner sig i "float"-läge).

För att aktivera:

- a. Koppla snabbt från "on" till "charger only" (erbart laddare) och lämnar brytaren i detta läge under ½ till 2 sekunder.
- b. Koppla snabbt tillbaka från "charger only" (erbart laddare) till "on" och lämnar brytaren i detta läge under ½ till 2 sekunder.
- c. Koppla en gång till snabbare från "on" till "charger only" (erbart laddare) och lämnar brytaren i detta läge.

Därefter kommer LED-dioderna "bulk", "absorption" och "float" att tändas under 2 sekunder.

- a. Om brytaren är inställd på "på" medan "bulk"-dioderna lyser kommer laddaren att växla till utjämning.
- b. Om brytaren är inställd på "på" medan "absorption"-dioderna lyser kommer laddaren att växla till forcerad utjämning.
- c. Om brytaren är inställd på "på" efter att de tre LED-diodearna "bulk", "absorption" och "float" att tändas under 2 sekunder. Därefter kommer LED-dioderna "bulk", "absorption" och "float" att tändas under 2 sekunder.
- d. Om brytaren inte har flyttats kvarstår Quattros i "erbart laddnings" läge och växla till "float".

- e. Om brytaren inte har flyttats kvarstår Quattros i "erbart laddnings" läge och växla till "float".
3.4 LED-indikationer och deras betydelse

- LED av
- LED blinkar
- LED tänds

Växelriktare

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>• mains on</td>
<td>on</td>
</tr>
<tr>
<td>• bulk</td>
<td>off</td>
</tr>
<tr>
<td>• absorption</td>
<td>off</td>
</tr>
<tr>
<td>• float</td>
<td>off</td>
</tr>
</tbody>
</table>

Inverter

<table>
<thead>
<tr>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>• inverter on</td>
</tr>
<tr>
<td>• overload</td>
</tr>
<tr>
<td>• low battery</td>
</tr>
</tbody>
</table>

- Växelriktaren är på och försörjer belastningen med ström.

- Den nominella uteffekten för växelriktaren har överskridits. LED-dioden "overload" (överbelastning) blinkar.

- Växelriktaren är avstängd på grund av överbelastning eller kortslutning.

- Batteriet är nästan tomt.

- Växelriktaren har stängts av på grund av låg batterispänning.

- Den interna temperaturen håller på att nå en kritisk nivå.
Omvarmlaren stängs av på grund av alltför hög intern temperatur.

- Om dioderna blinkar omväxlande är batteriet nästan tomt och nominell effekt har överskridits.
- Om "överbelastning" och "batteri lågt" blinkar samtidigt finns det alltför hög brumspänning vid batterianslutningen.

Växelriktaren stängs av på grund av alltför hög brumspänning på batterianslutningen.
Batteriladdare

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>○ bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>○ absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ temperature</td>
</tr>
</tbody>
</table>

AC-spänningen på AC-in-1 eller AC-in-2 växelriktas igenom och laddaren arbetar i bulkläge.

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>○ bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>○ absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

AC-spänningen på AC-in-1 eller AC-in-2 växelriktas igenom och laddaren fungerar, men den inställda absorptionsspänningen har fortfarande inte uppnåtts (batteriskyddsläge)

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>○ bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>○ absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

AC-spänningen på AC-in-1 eller AC-in-2 växelriktas igenom och laddaren arbetar i absorptionsfas.

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>○ bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>○ absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>● float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

AC-spänningen på AC-in-1 eller AC-in-2 växelriktas igenom och laddaren arbetar i float- eller förvaringsläge.

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>● mains on</td>
<td>○ inverter on</td>
</tr>
<tr>
<td>○ bulk</td>
<td>○ overload</td>
</tr>
<tr>
<td>○ absorption</td>
<td>○ low battery</td>
</tr>
<tr>
<td>○ float</td>
<td>○ charger only</td>
</tr>
</tbody>
</table>

AC-spänningen på AC-in-1 eller AC-in-2 växelriktas igenom och laddaren arbetar i utjämningsläge.
Specialindikationer

Inställd med begränsad inmatningsström

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
</tr>
</tbody>
</table>

AC-spänningen på AC-in-1 eller AC-in-2 växelriktas igenom. AC-ingångsströmmen är lika med belastningsströmmen. Laddaren styrs ner till 0A.

Inställd på att tillhandahålla extra ström

<table>
<thead>
<tr>
<th>charger</th>
<th>inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mains on</td>
<td>inverter on</td>
</tr>
<tr>
<td>bulk</td>
<td>overload</td>
</tr>
<tr>
<td>absorption</td>
<td>low battery</td>
</tr>
<tr>
<td>float</td>
<td>temperature</td>
</tr>
</tbody>
</table>

4. INSTALLATION

⚠️ Denna produkt får endast installeras av en utbildad eltekniker.

4.1 Placering

Quattro måste installeras på en torr och välventilerad plats, så nära batterierna som möjligt. Enheten bör omges av ett fritt utrymme på minst 10 cm i avkylningssyfte.

En alltför hög omgivande temperatur leder till följande konsekvenser:
- kortare livstid
- reducerad laddningsström.
- lägre toppspänning eller avstängning av växelriktaren.

Placera aldrig apparaten direkt ovanför batterierna.

Den inre delen av enheten bör förbli åtkomlig efter installationen.

Avståndet mellan Quattro och batteriet bör vara så kort som möjligt för att reducera spänningsförlusten för batterikablarna till ett minimum.

Installera produkten i en värmeskyddad miljö. Säkerställ därför att det inte finns några kemikalier, plastdelar, gardiner eller andra textilier, etc. i utrustningens omedelbara närhet.

Quattro har ingen intern DC-säkring. DC-säkringen bör installeras utanför Quattro.

4.2 Anslutning av batterikablarna

För att utnyttja Quattros fulla kapacitet bör batterier med tillräcklig kapacitet och batterikablar med korrekt tvärsnitt användas.

Se tabellen:

<table>
<thead>
<tr>
<th>Rekommenderad</th>
<th>12/3000/120</th>
<th>24/3000/70</th>
<th>48/3000/35</th>
</tr>
</thead>
<tbody>
<tr>
<td>batterkapacitet (Ah)</td>
<td>400–1200</td>
<td>200-700</td>
<td>100-400</td>
</tr>
<tr>
<td>Rekommenderad DC-säkring</td>
<td>400A</td>
<td>300A</td>
<td>125A</td>
</tr>
<tr>
<td>Rekommenderat tvärsnitt (mm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>per + och - anslutningspol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 5 m</td>
<td>2x 50 mm²</td>
<td>50 mm²</td>
<td>35 mm²</td>
</tr>
<tr>
<td>5–10 m*</td>
<td>2x 70 mm²</td>
<td>2x 50 mm²</td>
<td>2x 35 mm²</td>
</tr>
</tbody>
</table>

* "2x" betyder två positiva och två negativa kablar.

Procedur

För att ansluta batterikablarna, följ proceduren nedan:

⚠️ Avståndet mellan Quattro och batteriet bör vara så kort som möjligt för att reducera spänningsförlusten för batterikablarna till ett minimum.

- Lossa de fyra lägre frontpanelsskruvarna på enhetens framsida och avlägsna den lägre frontpanelen.
- Anslut batterikablarna: + (röd) på den högra polen och – (svart) på den vänstra polen (se appendix A).
- Spänn åt anslutningarna efter att du har monterat spännanordningen.

Använd en isolerad hylsnyckel för att undvika kortslutning av batteriet. **Maximalt vridmoment: 9 Nm**

Undvik att kortsluta batterikablarna. För att förhindra kortslutning av batteriet, bör en isolerad hylsnyckel användas.

- Lossa de fyra lägre frontpanelsskruvarna på enhetens framsida och avlägsna den lägre frontpanelen.
- Anslut batterikablarna: + (röd) på den högra polen och – (svart) på den vänstra polen (se appendix A).
- Spänn åt anslutningarna efter att du har monterat spännanordningen.
4.3 Anslutning av AC-kablar

I allmänhet rekommenderas inte den anslutning som beskrivs ovan till landanslutningsjord för båtar på grund av galvanisk korrosion. Lösningen för detta är att använda en isoleringstransformator.

AC-in-1 (se appendix A)
Om AC-spänning finns på dessa poler, kommer Quattro att använda denna anslutning. I allmänhet kommer en generator att anslutas till AC-in-1.
AC-ingången måste skyddas av en säkring eller magnetisk brytare på 50A eller mindre och kablens tvärsnitt måste vara av lämplig storlek. Om den inkommande AC-tillförseln har ett lägre värde, bör säkringen eller den magnetiska brytaren ändras i enlighet med detta.

AC-in-2 (se appendix A)
AC-in-2 måste skyddas av en säkring eller magnetisk brytare på 50A eller mindre och kablens tvärsnitt måste vara av lämplig storlek. Om den inkommande AC-tillförseln har ett lägre värde, bör säkringen eller den magnetiska brytaren ändras i enlighet med detta.

OBS: Quattro kanske inte startar om det endast finns växelström på AC-in-2 och om DC-batterispänningen är 10 % eller mer under det nominella värdet (mindre än 11 Volt för ett 12 volts batteri).

Lösning: anslut växelström till AC-in-1 eller ladda upp batteriet på nytt.

AC-out-1 (se appendix A)
AC-utgångskabeln kan anslutas direkt till terminalblocket "AC-out". Med PowerAssist-funktionen kan Quattro lägga till upp till 3kVA (dvs.3000 / 230 = 13A) till utestående under perioder med höga strömkrav. Tillsammans med en maximal ingångsström på 50 A betyder detta att utgången kan tillhandahålla upp till 50 + 13 = 63 A.
En jordläckagebrytare och en säkring eller brytare med kapacitet att hantera förväntad belastning måste inkluderas tillsammans med utgången och kablens tvärsnitt måste vara av lämplig storlek. De maximala kapaciteten för säkringen eller brytaren är 63A.

AC-out-2 (se appendix A)

Procedur
Använd treledad kabel. Anslutningspolerna är tydligt märkta med:
PE: jord
N: neutral ledare
L: fas/levande ledare
4.4 Anslutningsalternativ

4.4.1 Startbatteri (anslutning terminal E, se appendix A)
Quattro har en anslutning för laddning av ett startbatteri. Utmatningsströmmen är begränsad till 4A.

4.4.2 Spänningsensor (anslutning terminal E, se appendix A)
För att kompensera möjliga kabelförluster under laddning kan två kontrollkablar anslutas med vilka spänningen kan mätas direkt från batteriet eller från de positiva eller negativa distributionspunkterna. Använd kabel med ett tvärnitt på 0,75mm². Under batteriladdning, kommer Quattro att kompensera spänningsfall även via DC-kablar på upp till max 1 volt (dvs.1 V via den positiva anslutningen och 1 V via den negativa anslutningen). Om spänningsfallet riskerar att bli större än 1 V begränsas laddningsströmmen på ett sådant sätt att spänningsfallet förblir begränsat till 1 V.

4.4.3 Temperatursensor (anslutning terminal E, se appendix A)
För temperaturkompenserad laddning, kan temperatursensorn (levereras tillsammans med Quattro) anslutas. Sensorn är isolerad och måste anslutas till batteriets negativa pol.

4.4.4 Fjärrkontroll
Quattro kan fjärrstyras på två sätt.
Om man använder Multikontrollpanelen, kan endast strömbegränsningen för AC-in-2 ställas in (angående PowerControl och PowerAssist). Strömbegränsningen för AC-in-1 kan ställas in med DIP-switchar eller via mjukvara.

Endast en fjärrkontroll kan anslutas, dvs. antingen en switch eller en Multikontrollpanel.

4.4.5. Programmerbart relä
Quattro är utrustad med ett multifungerande relä som är inställt som larmrelä som standard. Reläet kan dock programmeras för alla möjliga typer av andra användningsområden, till exempel att starta en generator (programvaran VEConfigure behövs).

4.4.6 Hjälputgång för AC (AC-out-2)

4.4.7 Parallellkoppling av Quattros (se appendix C)
Quattro kan parallellanslutas med flera identiska enheter. För att göra detta upprättas en anslutning mellan enheterna med hjälp av standardkablar av typen RJ45 UTP. Systemet (en eller flera Quattros samt valfri kontrollpanel) kommer att kräva efterföljande konfigurering (se Avsnitt 5). I händelse av parallellanslutning av Quattro-enheter, måste följande krav uppfyllas:
- Max sex enheter kan parallellanslutas.
- Endast identiska enheter med samma strömkapacitet kan parallellkopplas.
- Batterikapaciteten bör vara tillräcklig.
- DC-anslutningskablarna till enheterna måste ha samma längd och tvärnitt.
- Om en positiv och en negativ DC-distributionspunkt används, måste tvärnittet för anslutningen mellan batterierna och DC-distributionspunkten vara minst lika med summan av det tvärnitt som krävs för anslutningarna mellan distributionspunkten och Quattro-enheterna.
- Placera Quattro-enheterna nära varandra, men tillåt minst 10 cm i ventilationssynt se under, ovanför och vid sidan om enheterna.
- UTP-kablar måste anslutas direktt från en enhet till en annan (och till fjärrpanelen). Anslutnings-/delningsboxar är inte tillåtna.
- En batteritemperatursensor behöver endast anslutas till en enhet i systemet. Om temperaturen för flera batterier ska uppstå, kan du även ansluta sensorer för andra Quattro-enheter i systemet (med ett maxantal av en sensor per Quattro).
- Temperaturkompensation under batteriladdning svarar på sensores som indikerar den högsta temperaturen.
- Spänningskontroll måste anslutas till master (se Avsnitt 5.5.1.4).
- Endast en fjärrkontrollenhett (panel eller switch) kan anslutas till systemet.

4.4.8 Trefaskonfigurering (se appendix C)
Quattro kan även användas i 3-faskonfiguration i y-koppling. För att uppnå detta upprättas en anslutning mellan enheterna med hjälp av en standardkabel av RJ45 UTP-typ (samma som för parallelldrift). Systemet (Quattro-enheter samt en valfri kontrollpanel) kommer att kräva efterföljande konfigurering (se Avsnitt 5).

Obs: Quattro är inte lämpad för 3-faskonfiguration i deltakoppling (Δ).
5. KONFIGURERING

- Inställningar får endast ändras av en utbildad eltekniker.
- Läs instruktionerna noggrant innan du genomför förändringar.
- Under inställning av laddaren, måste DC-säkringen i batterianslutningarna avlägsnas.

5.1 Standardinställningar: Färdig att använda

Vid leverans är Quattro inställd på standardfabriksvärdet. I allmänhet passar dessa inställningar för användning av en enskild enhet. Inställningarna behöver därför inte ändras i hänseende av fristående drift.

Varning: Det kan hända att standardladdningsspänningen för batterier inte passar för dina batterier! Se tillverkarens dokumentation eller rådfråga din batteritillverkare!

Standardfabriksinställningar för Quattro

<table>
<thead>
<tr>
<th>Växelriktarfrekvens</th>
<th>50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingångsfrekvensinterval</td>
<td>45 - 65 Hz</td>
</tr>
<tr>
<td>Ingångsspänningsinterval</td>
<td>180 - 265 VAC</td>
</tr>
<tr>
<td>Växelriktarspänning</td>
<td>230 VAC</td>
</tr>
<tr>
<td>Fristående / parallell / 3-fas</td>
<td>fristående</td>
</tr>
<tr>
<td>AES (Automatic Economy Switch)</td>
<td>av</td>
</tr>
<tr>
<td>Jordrelä</td>
<td>på</td>
</tr>
<tr>
<td>Laddare på/av</td>
<td>på</td>
</tr>
<tr>
<td>Batterladdningsskurva</td>
<td>fyrstegsanpassning med BatterySafe inställning</td>
</tr>
<tr>
<td>Laddningsström</td>
<td>75% av maximal laddningsström</td>
</tr>
<tr>
<td>Batterityp</td>
<td>Victron Gel Deep Discharge (passar även för Victron AGM Deep Discharge)</td>
</tr>
<tr>
<td>Automatisk utjämningsladdning</td>
<td>av</td>
</tr>
<tr>
<td>Absorptionsspänning</td>
<td>14.4 / 28.8 / 57.6 V</td>
</tr>
<tr>
<td>Absorptionstid</td>
<td>upp till 8 timmar (beroende på bulktid)</td>
</tr>
<tr>
<td>Absorptionsspänning</td>
<td>13.8 / 27.6 / 55.2 V</td>
</tr>
<tr>
<td>Förvaringsspänning</td>
<td>13.2 V (ej inställningsbar)</td>
</tr>
<tr>
<td>Upprepad absorptionstid</td>
<td>1 timma</td>
</tr>
<tr>
<td>Absorption upprepningsintervall</td>
<td>7 dagar</td>
</tr>
<tr>
<td>Bulkskydd</td>
<td>på</td>
</tr>
<tr>
<td>Generator (AC-in-1) / landström (AC-in-2)</td>
<td>50A/16A (= justerbar strömbegränsning för funktionerna PowerControl och PowerAssist)</td>
</tr>
<tr>
<td>UPS-funktion</td>
<td>på</td>
</tr>
<tr>
<td>Dynamisk strömbegränsare</td>
<td>av</td>
</tr>
<tr>
<td>WeakAC</td>
<td>av</td>
</tr>
<tr>
<td>BoostFactor</td>
<td>2</td>
</tr>
<tr>
<td>Programerbart relä</td>
<td>larm funktion</td>
</tr>
<tr>
<td>PowerAssist</td>
<td>på</td>
</tr>
</tbody>
</table>

5.2 Förklaring av inställningar

Inställningar som inte är självförklarande beskrivs kortfattat nedan. För ytterligare information hänvisas till hjälpfilerna i programvarukonfigurationen (se Avsnitt 5.3).

Växelriktarens frekvens

Utgångsfrekvens om ingen AC finns vid ingången.
Justerbarhet: 50Hz; 60Hz

Frekvensintervall, ingång

Justerbarhet: 45 – 65 Hz; 45 – 55 Hz; 55 – 65 Hz

Spänningsintervall, ingång

Justerbarhet:
Lägre gräns: 180 - 230V
Högre gräns: 230 - 270V

Spänning, växelriktare
Utgångsspänning för Quattro under batteridrift.
Justerbarhet: 210 – 245V

Fristående/ parallell drift/ 2-3 fasinställning
Vid användning av flera enheter är det möjligt att:
- öka den totala växelriktareffekten (flera enheter parallellkopplade)
- skapa ett delat fas-system genom stacking (endast för Quattro-enheter med 120 V utgångsspänning)
- skapa ett 3-fassystem.

AES (Automatic Economy Switch)
Om denna inställning aktiveras, minskar strömförbrukningen under drift utan belastning och med låg belastning med ungefär 20 %, genoigt något minska sinusspänningen. Ej justerbar med DIP-switchar. Gär endast att använda i fristående konfigurering.

Sökläge
Istället för AES-läge, kan sökläge även väljas (endast med hjälp av VEConfigure).

Batteriladdningskurva
Standardinställningen är "anpassningsbar i fyra steg med BatterySafe-läge". Se avsnitt 2 för en beskrivning.
Detta är den bästa laddningsinställningen. Se hjälpfilerna i programvarans konfigureringsprogram för andra funktioner.

Automatic utjämningsladdning
Denna inställning är avsedd för fordonsbatterier av rörplattetyp. Under absorption ökar spänningsbegränsningen till 2,83 V/cell (34 V för ett 24 V-batteri) så snart som laddningsströmmen har minskat till mindre än 10% av den inställda maxströmmen.

Absorptionstid
Absorptionstiden är en period då Totally Confident laddningsprocessen slutar och lagret startar att ladda. Absorptionstiden är avgörande för hur liggande strömstyrkan påverkar batteriet.

Förvaringsspänning, upprepad absorptionstid, repetitionsintervall för absorption
Se avsnitt 2. Ej justerbar med DIP-switchar.

Bulkskydd
När denna inställning är "på" begränsas bulkladdningsstiden till 10 timmar. En längre laddningstid skulle kunna indikera ett systemfel (t.ex. en kortsluten battericell). Ej justerbar med DIP-switchar.
AC-ingång strömbegränsning AC-in-1 (generator) / AC-in-2 (land-inätförsörjning)

Dessa är strömbegränsningsinställningarna för vilka PowerControl och PowerAssist träder i drift.

PowerAssist, inställningsintervall:
- Från 5,3A till 50A för ingång AC-in-1
- Från 5,3A till 50A för ingång AC-in-2

Fabriksinställning: maxvärde (50 A och 16A).

I händelse av parallellkopplade enheter måste minimi- och maxvärdena för intervallet multipliceras med antalet parallellkopplade enheter.

Se avsnitt 2, boken "Fristående elkraft" eller de många beskrivningarna av denna unika funktion på vår hemsida www.victronenergy.com.

UPS-funktion

Om denna inställning är "på" och AC för ingången felar, växlar Quattro till växelriktardrift, mer eller mindre utan avbrott. Quattro kan därför användas som en driftsavbrottsäker strömkälla eller Uninterruptible Power Supply (UPS) för känslig utrustning som datorer eller kommunikationssystem.

Rekommendation: Stäng av UPS-funktionen om din Quattro inte lyckas synkronisera, eller hela tiden växlar tillbaka till växelriktardrift.

Dynamisk strömbegränsare

Avsedd för generatorer där AC-spänningen alstras med hjälp av en statisk växelriktare (så kallade "växelriktar*-generatorer). I dessa generatorer styrs varvalet ned om belastningen är låg: detta minskar buller, bränsleförbrukning och föroreningar. En nackdel är att utgångsspänningen kommer att falla mycket eller till och med försvinna helt i händelse av en plötslig belastningsökning. Högare belastning kan endast försörjas efter att motorn har ökat hastigheten. Om denna inställning "på", kommer Quattro att börja tillhandahålla extra ström vid låg generatoreffektnivå och gradvis låta generatorn tillhandahålla mer, tills den inställda strömgränsen har uppnåtts. Denna inställning används också ofta för "traditionella" generatorer som svarar långsamt på plötsliga belastningsvariationer.

WeakAC

Kraftig distortion av ingångsspänningen kan leda till att laddaren nästan inte arbetar eller slutar att arbeta helt. Om WeakAC är inställd kommer laddaren även att acceptera spänning med kraftig distorsion, till priset av högre distorsion för ingångströmmen.

Rekommendation: Slå på WeakAC om laddaren nästan inte laddar eller inte laddar överhuvudtaget (vilket är ganska ovanligt!).

BoostFactor

Ej justerbar med DIP-switchar.

Tre programmerbara reläer

Quattro är utrustad med tre programmerbara reläer. Reläerna kan programmeras för alla möjliga andra användningsområden, till exempel som ett startrelä för en generator. Standardinställningen för ett relä i position I (se appendix A, övre högra hörnet) är "larm".

Frekvensändring

När solcellsomvandlare är kopplade till utgångsporten på en Multi eller Quattro används överskottssenergin för att ladda batterierna. När absorptionsspänningen uppnås stänger Multi eller Quattro av solcellsomvandlaren genom att ändra utgångsfrekvensen med 1 Hz (från 50 Hz till 51 Hz till exempel). När batterispänningen har minskat något återgår frekvensen till normalläge och solcellsomvandlarna startar på nytt.

Inbyggd batterioröervakare (valfritt)

Det är en perfekt lösning om din Multi- eller Quattro-enhet är del av ett hybridsystem (t.ex. en dieselelgenerator, växelriktare/laddare, förvaringsbatteri och alternativa energikällor). Den inbyggda batterioröervakaren kan ställas in för att starta eller stänga av generatorn:
- Starta vid en förinställd % urladdningsnivå, och/eller
- starta (med en förinställd fördöjning) vid en förinställd batterispänning, och/eller
- starta (med en förinställd fördöjning) vid en förinställd belastningsnivå.

Hjälpugtång för AC (AC-out-2)

Förutom den normala avbrotssäker utgången (AC-out-1), finns en hjälpugtång (AC-out-2) tillgänglig som kopplar bort sin belastning i händelse av batteridrift. Exempel: en elektrisk varmvattenberedare eller en luftkonditionering som endast får fungera om generatorn är i drift eller om landström finns tillgängligt.

I händelse av batteridrift stängs AC-out-2 av automatiskt. Efter att AC-tillförseln har blivit tillgänglig återansluts AC-out-2 med en fördöjning på 2 minuter, detta är för att tillåta att generatorn stabiliseras innan tung belastning ansluts.

14
5.3 Konfigurering via dator

Alla inställningar kan ändras med hjälp av en dator eller med en VE.Net-panel (förutom multifunktionsreläet och VirtualSwitch när man använder VE.Net).
De vanligaste inställningarna kan ändras med hjälp av DIP-switchar (se avsnitt 5.5).

OBS:
Denna manual gäller produkter med programvariant xxxx400 eller högre (med x menas vilket nummer som helst)
Programnumret går att utläsa på mikroprocessorn, efter att frontpanelen har tagits bort.
Det är möjligt att uppdatera äldre enheter om det sjusiffriga numret börjar på 26 eller 27. Om det börjar på 19 eller 20 har du en
gammal mikroprocessor och det är inte möjligt att uppdatera till 400 eller högre.

För att ändra inställningar med datorn krävs följande:
 Alternativt kan gränssnittet MK2.2b (VE.Bus till RS232) och en RJ45 UTP-kabel användas.

5.3.1 VE.Bus Quick konfigurationsinställning
VE.Bus Quick Configure Setup är ett program med vilket man kan konfigurera system med max tre Quattro-enheter (parallellell-
er eller trefasdrift) på ett enkelt sätt. VEConfigure3 utgör en del av detta program.

5.3.2 VE.Bus System Configurator
För konfigurering av avancerade applikationer och/eller system med fyra eller fler Quattro-enheter måste programvaran
en del av detta program.

5.4 Konfigurering med en VE.Net-panel

För att uppnå detta behövs en VE.Net-panel och VE.Net till VE.Bus-omvandlaren.
Med VE.Net är alla parametrar åtkomliga, men undantag av det multifunktionella reläet och VirtualSwitch.
5.5 Konfiguration med DIP-switchar

Introduktion
Ett antal inställningar kan ändras med hjälp av DIP-switchar (se appendix A, position M).

En anmärkning om använd terminologi:

Det är även möjligt att skapa fler AC-faser (delade faser eller 3-faser) med 2 eller 3 Quattro-enheter. I sådana fall kallas Quattron i fas L1 ledaren. Quattro-enhéterna i fas L2 (och L3 om tillgänglig) kommer att generera samma AC-frekvens men kommer att följa L1 med ett fast fasskift. Dessa Quattro-enheter kallas följare.

Om fler Quattro-enheter används per fas i en delad fas eller i ett trefassystem (till exempel 6 Quattro-enheter som används för att bygga ett trefassystem med två Quattro-enheter per fas) är ledaren för systemet även master i fas L1. Följarna i fas L2 och L3 får även rollen som master i fas L2 och L3. Alla andra kommer att vara slavar.

Uppsättning av parallella eller delade/trefassystem ska göras med programvara, se paragraf 5.3.
TIPS: Om du inte vill bry dig om vilken Quattro som är master/slav/följare är det enklaste sättet att göra identiska inställningar på alla Quattro-enheter.

Allmän procedur:
Slå på Quattro, helst utan belastning och utan AC-spänning på ingångarna. Quattro kommer då att fungera i växelriktarläge.

Steg 1: Ställa in DIP-switcharna för:
- den strömbegränsning som krävs för AC-ingången. (ej relevant för slavar)
- begränsning för laddningsströmmen. (endast relevant för master/ledare)
Tryck på "Upp"-knappen i 2 sekunder (den övre knappen till höger om DIP-switcharna, se appendix A, position K) för att spara inställningarna efter att de nödvändig vaerdia har ställts in. Du kan nu använda DIP-switcharna igen för att göra de återstående inställningarna (steg 2).

Steg 2: andra inställningar, ställ in DIP-switcharna för:
- Laddningsspänningar (endast relevant för master/ledare)
- Absorptionsladdning (endast relevant för master/ledare)
- Anpassningsbar laddning (endast relevant för master/ledare)
- Dynamisk strömbegränsare (ej relevant för slavar)
- UPS-funktion (ej relevant för slavar)
- växelriktarspänning (ej relevant för slavar)
- växelriktarfrekvens (endast relevant för master/ledare)
Tryck på "Ner"-knappen i 2 sekunder (nedre knappen till höger om DIP-switcharna) för att spara inställningarna efter att DIP-switcharna har ställts in på korrekt position. Du kan nu lärna DIP-switcharna i de valda positionerna så att "andra inställningar" alltid kan återfås.

Anmärkning:
- DIP-switchfunktionerna beskrivs i ordningen "uppifrån och ner". Eftersom den översta DIP-switchen har det högsta numret (8) börjar beskrivningarna med switch nummer 8.

5.5.1 Steg 1
5.5.1.1 Strömbegränsning, AC-ingång (standard: AC-in-1: 50A, AC-in-2: 16A)

Om AC-ingångsströmmen som dras av Quattro (på grund av anslutna belastningar och batteriladdaren) hotar att överskrida den inställda begränsningen av AC-ingångsström kommer Quattron först att minska sin laddningsström (PowerControl) och därefter distribuera extra ström från batteriet (PowerAssist) vid behov. På så sätt försöker Quattro att förhindra att ingångsströmmen överskriden den inställda gränsen.

Procedur
Ac-in-1 kan ställas in med hjälp av DIP-switcharna ds8, ds7 och ds6 (standardinställning: 50A).

Procedur: ställ in DIP-switcharna till önskat värde:

<table>
<thead>
<tr>
<th>ds8</th>
<th>ds7</th>
<th>ds6</th>
</tr>
</thead>
<tbody>
<tr>
<td>av</td>
<td>av</td>
<td>av</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

Anmärkning: Tillverkarspecifierade kontinuerliga strömkapaciteter för mindre generatorer har ibland en tendens att vara något optimistiska. I detta fall, bör strömbegränsningen ställas in till ett mycket lägre värde än vad som annars krävs, baserat på tillverkarens specifierade data.

AC-in-2 kan ställas in i två steg med hjälp av DIP-switch ds5 (standardinställning: 16A).

Procedur: ställ in ds5 till önskat värde:

<table>
<thead>
<tr>
<th>ds5</th>
</tr>
</thead>
<tbody>
<tr>
<td>av</td>
</tr>
<tr>
<td>på</td>
</tr>
</tbody>
</table>

Över 30 A: med VEConfigure programvara eller en digital MultiControl-panel

Viktigt: När en panel ansluts, avgörs strömbegränsningen för AC-in-2 av panelen och inte av värdet som är lagrat i Quattro.

5.5.1.2 Laddningsströmbegränsning (standardinställning 75%)
För maximal blybatterilivslängd bör en laddningsström på 10 % till 20 % avkapaciteten i Ah användas.

Exempel: optimal laddningsström för en 24V/500 Ah batteribank: 50A till 100A.

Den medföljande temperatursensorn justerar automatiskt laddningsspänningen till batteritemperaturen.

Om snabbare laddning – och en påföljande högre ström – krävs:
- Den medföljande temperatursensorn bör alltid monteras, eftersom snabb laddning kan leda till en betydande temperaturhöjning för batteribanken. Laddningsspänningen kommer att anpassas till den högre temperaturen (dvs. sänkas) via temperatursensorn.
- Bulkladdningsfilen kommer ibland att vara så kort att en fast absorptionstid skulle vara mera lämplig (’fast’ absorptionstid, se ds5, steg 2).

Procedur
Batteriladdningsströmmen kan ställas in i fyra steg med hjälp av DIP-switchar ds4 och ds3 (standardinställning: 75%)

<table>
<thead>
<tr>
<th>ds4</th>
<th>ds3</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

Obs: när WeakAC är på minskas den maximala laddningsspänningen från 100 % till ungefär 80 %.

5.5.1.3 DIP-switcharna ds2 och ds1 används inte under steg 1.

VIKTIGT INFORMATION::
Om de 3 sista siffrorna på det fasta Multi-programmet är inom 100-intervallen (om programnumret är xxxx1xx (med x menas vilket nummer som helst)) används ds1 & ds2 till att ställa in en Multi i fristående, parallell eller 3-fas. Vänligen läs i tillämplig bruksanvisning.
5.5.1.4 Exempel

Exempel på inställningar:

<table>
<thead>
<tr>
<th>DS-8 AC-in-1</th>
<th>on</th>
<th>DS-7 AC-in-1</th>
<th>on</th>
<th>DS-6 AC-in-1</th>
<th>on</th>
<th>DS-5 AC-in-2</th>
<th>on</th>
<th>DS-4 Ladd. ström</th>
<th>on</th>
<th>DS-3 Ladd. ström</th>
<th>on</th>
<th>DS-2 Fristående läge</th>
<th>off</th>
<th>DS-1 Fristående läge</th>
<th>off</th>
</tr>
</thead>
</table>

Steg 1, fristående
Exempel 1 (fabriksinställning): 8, 7, 6 AC-in-1: 50A 5 AC-in-2: 30A 4, 3 Laddningsström 75% 2, 1 Fristående läge

Steg 1, fristående
Exempel 2: 8, 7, 6 AC-in-1: 16A 5 AC-in-2: 16A 4, 3 Laddning: 100% 2, 1 Fristående läge

Steg 1, fristående
Exempel 3: 8, 7, 6 AC-in-1: 16A 5 AC-in-2: 16A 4, 3 Laddning: 100% 2, 1 Fristående läge

Steg 1, fristående
Exempel 4: 8, 7, 6 AC-in-1: 50A 5 AC-in-2: 30A 4, 3 Laddning: 50% 2, 1 Fristående läge

Vi rekommenderar att du antecknar inställningarna och sparar denna information på en säker plats.

DIP-switcharna kan nu användas för att applicera de återstående inställningarna (steg 2).

5.5.2 Steg 2 Andra inställningar
De återstående inställningarna är inte relevanta för slavar.
Några av de återstående inställningarna är inte relevanta för följare (L2, L3). Dessa inställningar läggs till i hela systemet genom ledaren L1. Om en inställning är irrelevant för L2-, L3-enheterna, anges detta uttryckligen.

ds8-ds7: Inställning av laddningsspänning (ej relevant för L2, L3)

<table>
<thead>
<tr>
<th>ds8-ds7</th>
<th>Absorption spänning</th>
<th>Float spänning</th>
<th>Förvaring spänning</th>
<th>Lämplig för</th>
</tr>
</thead>
<tbody>
<tr>
<td>off off</td>
<td>14,1</td>
<td>13,8</td>
<td>13,2</td>
<td>Gel Victron Long Life (OPzV)</td>
</tr>
<tr>
<td></td>
<td>28,2</td>
<td>27,6</td>
<td>26,4</td>
<td>Gel Exide A600 (OPzV)</td>
</tr>
<tr>
<td></td>
<td>56,4</td>
<td>55,2</td>
<td>52,8</td>
<td>Gel MK-batteri</td>
</tr>
<tr>
<td>off on</td>
<td>14,4</td>
<td>13,8</td>
<td>13,2</td>
<td>Gel Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td>28,8</td>
<td>27,6</td>
<td>26,4</td>
<td>Gel Exide A200</td>
</tr>
<tr>
<td></td>
<td>57,6</td>
<td>55,2</td>
<td>52,8</td>
<td>AGM Victron Deep Discharge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stationära rörplattebatterier (OPzS)</td>
</tr>
<tr>
<td>on off</td>
<td>14,7</td>
<td>13,8</td>
<td>13,2</td>
<td>AGM Victron Deep Discharge</td>
</tr>
</tbody>
</table>
| | 29,4 | 27,6 | 26,4 | Rörplatta (OPzS) -batterier i semi-
| | 58,8 | 55,2 | 52,8 | float-läge |
| | | | | AGM spiralcell |
| on on | 15,0 | 13,8 | 13,2 | Rörplatta (OPzS) -batterier i cyklist lidge |
| | 30,0 | 27,6 | 26,4 | |
| | 60,0 | 55,2 | 52,8 | |

ds6: absorptionstid 8 eller 4 timmar (ej relevant för L2, L3) on = 8 timmar off = 4 timmar

ds5: anpassningsbara laddningsfunktion (ej relevant för L2, L3) on = aktiv off = inaktiv (inaktiv = fast absorptionstid)

ds4: dynamisk strömbegrensare on = aktiv off = inaktiv

ds3: UPS-funktion on = aktiv off = inaktiv

ds2: omvandlarspänning on = 230V off = 240V

ds1: omvandlarfrequens (ej relevant för L2, L3) on = 50 Hz off = 60 Hz

(det breda ingångsfrekvensintervallet (45-55 Hz) är ”på” som standard)

OBS:
- Om den "anpassningsbara laddningsalgoritmen" är på ställer ds6 in den maximala absorptionstiden till 8 eller 4 timmar.
- Om den "anpassningsbara laddningsalgoritmen" är av ställs absorptionstiden till 8 eller 4 timmar (fast) av ds6.
Steg 2: Exempelinställningar
Exempel 1 visar fabriksinställningen (eftersom fabriksinställningar anges av en dator är alla DIP-switchar för en ny produkt inställda på "av" och återger inte de faktiska inställningarna i mikroprocessorn).

<table>
<thead>
<tr>
<th>DS-8 Ladd. spänning</th>
<th>off</th>
<th>DS-8 on</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-7 Ladd. spänning</td>
<td>on</td>
<td>DS-7 on</td>
</tr>
<tr>
<td>DS-6 Absorpt. tid</td>
<td>on</td>
<td>DS-6 on</td>
</tr>
<tr>
<td>DS-5 Anpass. laddn.</td>
<td>on</td>
<td>DS-5 on</td>
</tr>
<tr>
<td>DS-4 Dyn. strömbegr.</td>
<td>off</td>
<td>DS-4 on</td>
</tr>
<tr>
<td>DS-3 UPS-funktion</td>
<td>on</td>
<td>DS-3 on</td>
</tr>
<tr>
<td>DS-2 Spänning</td>
<td>on</td>
<td>DS-2 off</td>
</tr>
<tr>
<td>DS-1 Frekvens</td>
<td>on</td>
<td>DS-1 off</td>
</tr>
</tbody>
</table>

Steg 2
Exempel 1 (fabriksinställning):
8, 7 GEL 14,4 V
6 Absorptionstid: 8 timmar
5 Anpassningsbar laddning: på
4 Dynamisk strömbegränsning: av
UPS-funktion: på
2 Spänning: 230V
1 Frekvens: 50Hz

För att spara inställningarna efter att de krävda värdena har ställts in: tryck på "ned"-knappen i 2 sekunder (nedre knappen till höger om DIP-switcharna). LED-dioderna för överbelastning och lågt batteri kommer att blinka för att indikera att inställningarna har accepterats.

Du kan nu lämna DIP-switcharna i de valda positionerna, så att "andra inställningar" alltid kan återfås.
6. UNDERHÅLL
Quattro kräver inget särskilt underhåll. Det räcker att inspektera alla anslutningar en gång per år. Undvik fukt och olja/sot/ångor och håll apparaten ren.

7. FELINDIKATIONER

Viktig anmärkning:
När batteriet är helt urladdat (batterispänningen lägre än 10 V/20 V eller 40 V) kommer Quattro endast att börja ladda när det finns växelström kopplad till AC-in-1. För att Quattro ska börja ladda när det finns växelström kopplad till AC-in-2 måste batterispänningen överstiga 10 V/20 V eller 40 V.

7.1 Allmänna felindikationer

<table>
<thead>
<tr>
<th>Problem</th>
<th>Orsak</th>
<th>Lösning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nålar avstannar startar inte när den slägs på</td>
<td>Batterispänningen är alltför låg eller alltför hög. Ingen spänning på DC-anslutningen.</td>
<td>Säkerställ att batterispänningen är inom korrekt intervall.</td>
</tr>
<tr>
<td>LED-dioderna "Batteri lägt" och "Oversättningsfel" tänds.</td>
<td>Växelriktaren stängs av på grund av alltför hög brumspänning på ingången.</td>
<td>Installera batterier med större kapacitet. Anslut kortare och/eller grövre batterikablar och återställ växelriktaren (stäng av och slå sedan på igen).</td>
</tr>
<tr>
<td>Laddaren fungerar inte.</td>
<td>AC-ingångsspänningen eller frekvensen befinner sig inte inom inställt intervall.</td>
<td>Säkerställ att AC-inmatningen är mellan 180 VAC och 265 VAC och att frekvensen befinner sig inom inställt intervall (standardinställning 45-65Hz).</td>
</tr>
<tr>
<td>Laddaren fungerar inte.</td>
<td>Batterisäkringen har gått sönder.</td>
<td>Byt ut batterisäkringen.</td>
</tr>
<tr>
<td>Batteriet är överladdat.</td>
<td>Absorptionsspänningen har ställts in på felaktig nivå (för hög).</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ställ in absorptionsspänningen till korrekt nivå.</td>
<td></td>
</tr>
<tr>
<td>Batteriet är dåligt.</td>
<td>Float-spänningen har ställts in på felaktig nivå (för hög).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ställ in float-spänningen till korrekt nivå.</td>
<td></td>
</tr>
<tr>
<td>Batteriet är överhettat (>50°C)</td>
<td>Laddningströmmen faller till 0 så snart som absorptionfasen inleds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batteriet är överhettat (>50°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batteritemperaturen är för hög (på grund av dålig ventilation, alltför hög omgivande temperatur eller alltför hög laddningsström).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Förbättra ventilationen, installera batterierna i en svalare miljö, reducera laddningsströmmen och anslut temperatursensorn.</td>
<td></td>
</tr>
<tr>
<td>Defekt batteritemperatursensor</td>
<td>Batteriet är dåligt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installera batterierna i en svalare miljö. Minska laddningsströmmen och Kontrollera huruvida en av battericellerna har en intern kortslutning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Koppla bort temperatursensoringången för Quattro. Om laddningen fungerar korrekt efter ungefär 1 minut bör temperatursensorn bytas ut.</td>
<td></td>
</tr>
</tbody>
</table>
7.2 Särskilda LED-indikationer
(för normala LED-indikationer, se avsnitt 3.4)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"Nätström på" blinkar och det finns ingen utgångsspänning.</td>
<td>Enheten befinner sig i läget "endast laddning" och näströmsförsörjningen är aktiv. Enheten nekar näströmsförsörjningen eller synkroniserar fortfarande.</td>
</tr>
</tbody>
</table>

7.3 VE.Bus LED-indikationer

7.3.1 VE.Bus OK-koder

Om den interna statusen för en enhet fungerar korrekt, men enheten fortfarande inte kan startas på grund av att en eller flera enheter i systemet indikerar en felstatus, kommer enheterna som fungerar korrekt att indikeran en OK-kod. Detta underlättar felsökning i ett VE.Bus-system eftersom enheter som inte kräver åtgärder är lätta att identifiera.

Viktigt: OK-koder kommer endast att visas om en enhet inte befinner sig i växelriktar- eller laddningsläge!

En blinkande "bulk"-diod indikerar att enheten kan utföra växelriktar-drift.

En blinkande "float"-diod indikerar att enheten kan utföra laddningsdrift.

OBS: I princip måste alla andra dioder vara av. Om detta inte är fallet är kod en OK-kod. Dock gäller följande undantag:

De särskilda LED-indikationerna ovan kan inträffa tillsammans med OK-koderna.
- Dioden "batteri lågt" kan fungera tillsammans med den OK-kod som indikerar att enheten kan ladda.

7.3.2 VE.Bus - felkoder

Ett VE.Bus-system kan visa flera olika felkoder. Dessa koder visas med dioderna "växelriktare på", "bulk", "absorption" och "float"

För att tolka en VE.Bus-felkod korrekt bör följande procedur genomföras:
1. Enheten bör befinna sig i felläge (ingen AC-utmatning).
2. Blinkar dioden "inverter on" (växelriktare på)? Om inte, finns det ingen VE.Bus-felkod.
3. Om en eller flera av dioderna "bulk", "absorption" eller "float" blinkar, måste denna blinkning vara i motfas till dioden "inverter on" (växelriktare på), dvs. de blinkande dioderna är av om dioden "inverter on" (växelriktare på) är på, och tvärtom. Om detta inte är fallet, är koden inte en VE.Bus-felkod.
4. Kontrollera dioden "bulk" och avgör vilken av dessa tre nedanstående tabeller som bör användas.
5. Välj korrekt kolumn och rad (beroende på dioderna "absorption" och "float") och fastställ felkoden.
6. Ta reda på vad koden betyder i tabellerna nedan.
Alla villkor nedan måste uppfyllas:

16. Enheten befinner sig i felläge! (ingen AC-utmatning)
17. Dioden för växelriktaren blinkar (i motsats till blinkande dioder för bulk, absorption eller float)
18. Åtminstone en av dioderna för bulk, absorption eller float är tänd eller blinkar.

<table>
<thead>
<tr>
<th>Bulkdiod av</th>
<th>Bulkdiod blinkar</th>
<th>Bulkdiod på</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorptionsdiod</td>
<td>off</td>
<td>blinkar</td>
</tr>
<tr>
<td>Float-diod</td>
<td>off 0 3 6</td>
<td>blinkar 1 4 7</td>
</tr>
<tr>
<td>Bulkdiod</td>
<td>off 9 12 15</td>
<td>blinkar 10 13 16</td>
</tr>
<tr>
<td>Absorptionsdiod</td>
<td>off</td>
<td>blinkar</td>
</tr>
<tr>
<td>Float-diod</td>
<td>off 18 21 24</td>
<td>blinkar 19 22 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kod</th>
<th>Betydelse</th>
<th>Orsak/lösning:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enheten är avstängd på grund av att en av de andra faserna i systemet har stängts av.</td>
<td>Kontrollera den felande fasen.</td>
</tr>
<tr>
<td>4</td>
<td>Inga andra enheter överhuvudtaget kunde hittas.</td>
<td>Kontrollera kommunikationskablan.</td>
</tr>
<tr>
<td>14</td>
<td>Denheten kan inte överförda data.</td>
<td>Kontrollera kommunikationskablan (det kan finnas en kortslutning).</td>
</tr>
<tr>
<td>18</td>
<td>Överspänning har inträffat.</td>
<td>Kontrollera AC-kablarna.</td>
</tr>
<tr>
<td>22</td>
<td>Denna enhet kan inte fungera som "slav".</td>
<td>Denna enhet är en föråldrad och olämplig enhet. Den bör bytas ut.</td>
</tr>
<tr>
<td>25</td>
<td>Firmware-inkompatibilitet. Firmware för en av de anslutna enheterna är inte tillräckligt uppdaterad för att kunna fungera i anslutning till denna enhet.</td>
<td>1) Stäng av all utrustning. 2) Slå på den enhet som skickar detta felmeddelande. 3) Slå på alla andra enheter, en i taget, tills felmeddelandet inträffar igen. 4) Uppdatera firmware för den senaste enheten som slogs på.</td>
</tr>
</tbody>
</table>
8. TEKNISSKA SPECIFIKATIONER

Quattro

<table>
<thead>
<tr>
<th>PowerControl/ PowerAssist</th>
<th>Ja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrerad transfer-switch</td>
<td>Ja</td>
</tr>
</tbody>
</table>

AC-ingångar (2x)
- Spänningsintervall, ingång: 187-265 VAC
- Ingångsfrekvens: 45 – 65 Hz
- Strömfaktor: 1

Maximal matningsström (A)
- AC-in-1: 50A
- AC-in-2: 50A

Min.PowerAssist-ström (A)
- AC-in-1: 5,3A
- AC-in-2: 5,3A

VÄXELRIKTARE

Ingångsspänningsintervall (V DC)
- 9,5 – 17
- 19 – 33
- 38 – 66

Utgång (1)
- Utgångsspänning: 230 VAC ± 2%
- Frekvens: 50 Hz ± 0,1%

Kont. utgångström vid 25°C (VA)
- (3)
- 3000
- 3000
- 3000

Kont. utgångström vid 40°C (W)
- 2200
- 2200
- 2200

Kont. utgångström vid 65°C (W)
- 1700
- 1700
- 1700

Toppström (W)
- 6000
- 6000
- 6000

Maxbelastning (%)
- 93
- 94
- 95

Nullbelastningsström (W)
- 20
- 20
- 25

Nullbelastningsström i AES-läge (W)
- 15
- 15
- 20

Nullbelastningsström i sök-läge (W)
- 8
- 10
- 12

LADDARE

Laddningsspänning "absorption" (V DC)
- 14,4
- 28,8
- 57,6

Laddningsspänning "float" (V DC)
- 13,8
- 27,6
- 55,2

Förvaringsläge (V DC)
- 13,2
- 26,4
- 52,8

Laddningsström husbatteri (A)
- (4)
- 120
- 70
- 35

Laddningsström startbatteri (A)
- 4

Batteritemperatursensor
- Ja

ALLMÄNT

Hjälputgång för växelström
- Maxbelastning: 25A
- Stängs av när den är i växelriktarläge

Programmerbart relä
- (5)
- Ja

Skydd
- a – g

Allmänna egenskaper
- Driftstemp.: -40 till +65°C (fläktassisterad kylning)
- Fukthet (icke-kondenserande): max 95%

HÖLJE

Allmänna egenskaper
- Material & färg: aluminium (blå RAL 5012)
- Skyddssnivå: IP 21

Batterianslutning
- M8 bultar (2 plus- och 2 minusanslutningar)

230 volts AC-anslutning
- Skruvteterminaler 13 mm² (6 AWG)

Vikt (kg)
- 19

Dimensioner (h x b x d i mm)
- 362 x 258 x 218

STANDARDER

Säkerhet
- EN 60335-1, EN 60335-2-29

Emission / Immunitet
- EN 55014-1, EN 55014-2, EN 61000-3-3

1) Kan justeras till 60Hz och till 240V
2) Skydd
 a. Utgång kortsluten
 b. Överbelastning
 c. För hög batterispänning
 d. För låg batterispänning
 e. För hög temperatur
 f. 230VAC på växelriktarutgång
 g. Input voltage ripple too high
3) Icke-linjär belastning, toppfaktor 3:1
4) Vid 25°C omgivning
 a. Alarm, DC undervoltage or genset start/stop function
 b. AC rating: 230V/4A
 c. DC rating: 4A up to 35VDC and 1A upto 60VDC
APPENDIX A: Connection overview
ANNEXE A : Vue d’ensemble des connections
ANHANG A: Übersicht Anschlüsse
APÉNDICE A: Conexiones generales
APPENDIX A: Anslutningsöversikt
APPENDIX A: Connection overview

<p>| A | AC input (generator input) AC-in-1. | Left to right: GROUND (earth), L (phase), N (neutral). |
| B | 2x RJ45 connector for remote panel and/or parallel and 3-phase operation. | |
| C | AC output AC-out-1. | Left to right: L (phase), N (neutral), GROUND (earth). |
| D | AC output AC-out-2. | Left to right: L (phase), N (neutral). |
| E | Terminals for: (left to right) Temperature sensor Aux input 1 Aux input 2 GND-relay Starter battery plus + (starter battery minus must be connected to service battery minus) Programmable relay contacts K1 Programmable relay contacts K2 Voltage sense |
| F | Double M8 battery minus connection. |
| G | Double M8 battery positive connection. |
| H | Connector for remote switch: Short left and middle terminal to switch “on”. Short right and middle terminal to switch to “charger only”. |
| I | Alarm contact: (left to right) NC, NO, COM. |
| J | AC input (shore/grid supply) AC-in-2. Left to right: L (phase), N (neutral), GROUND (earth). |
| K | Pushbuttons for set-up mode |
| L | Primary ground connection (PE). |
| M | DIP switches for set-up mode. |
| N | Slide switches, factory setting SW1= right position, SW2 = right position. SW1: No application. To be used for future features. SW2: INT(R) = internal GND relay selected, EXT(L) = external GND relay selected (to connect ext GND relay: see E). |</p>
<table>
<thead>
<tr>
<th></th>
<th>FR</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Entrée CA (entrée du groupe) AC-in-1. De gauche à droite : TERRE (terre) L (phase), N (neutre).</td>
<td>AC Eingang (Generator-Eingang) AC-in-1. Links nach rechts: GROUND (Erde); L (Phase), N (Nullleiter).</td>
</tr>
<tr>
<td>B</td>
<td>2 connecteurs RJ45 pour tableau de commande et/ou fonctionnement en parallèle / triphasé.</td>
<td>2x RJ45-Stecker für das Fernbedienungspaneel und/oder Parallel- und 3-Phasenbetrieb.</td>
</tr>
<tr>
<td>C</td>
<td>Sortie CA AC-out-1. De gauche à droite : L (phase), N (neutre), TERRE (terre).</td>
<td>AC Ausgang AC out-1. Links nach rechts: L (Phase), N (Nullleiter), GROUND (Erde).</td>
</tr>
<tr>
<td>E</td>
<td>Bornes pour: (de gauche à droite) Capteur de température Aux input 1 Aux input 2 Batterie de démarrage + (le pôle négatif de la batterie de démarrage doit être connecté au pôle négatif de la batterie de service) Relais de mise à terre Contacts relais programmable K1 Contacts relais programmable K2 Sonde de tension</td>
<td>Raccordement négatif de la batterie avec double écrou M8.</td>
</tr>
<tr>
<td>F</td>
<td>Raccordement négatif de la batterie avec double écrou M8.</td>
<td>Double connexion positive de batterie M8.</td>
</tr>
<tr>
<td>G</td>
<td>Connecteur pour le contacteur à distance: Connecter borne gauche et centrale pour mise en marche. Connecter borne droite et centrale pour passer a « charger only ».</td>
<td>Connecteur für Fernbedienungsschalter: Kurze linke und mittlere Anschlussklemme, um auf "ON" (EIN) zu schalten. Kurze rechte und mittlere Anschlussklemme, um auf "charger only" (nur Ladegerät) zu schalten</td>
</tr>
<tr>
<td>H</td>
<td>Contacts alarme : (de gauche à droite) NC, NO, COM.</td>
<td>Alarm-Kontakt: (links nach rechts) NC, NO, COM.</td>
</tr>
<tr>
<td>J</td>
<td>Boutons-poussoir. Mode paramétrage.</td>
<td>Taster für Einstellungsmodus</td>
</tr>
<tr>
<td>K</td>
<td>Connexion primaire à la terre (PE)</td>
<td>Primäre Erdung (PE).</td>
</tr>
<tr>
<td>L</td>
<td>Interrupteurs à glissière, configuration d'usine SW1 = position droite, SW2 = position droite. SW1 : Pas d’application. À utiliser pour de futures fonctions. SW2 : INT(R) = relais de terre interne sélectionné, EXT(L) = relais de terre externe sélectionné. (pour connecter le relais de terre externe : voir E).</td>
<td>DIP-Schalter für den Einstellungsmodus.</td>
</tr>
<tr>
<td>A</td>
<td>Entrada CA (entrada del generador) AC-in-1. De izquierda a derecha: GROUND (tierra), L (fase), N (neutro).</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2 conectores RJ45 para panel remoto y/o funcionamiento en paralelo o trifásico.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Salida CA AC-out-1. De izquierda a derecha: L (fase), N (neutro), GROUND (tierra).</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Salida CA AC-out-2. De izquierda a derecha: L (fase), N (neutro).</td>
<td></td>
</tr>
</tbody>
</table>
| **E** | Terminales para: (de derecha a izquierda)
Sensor de temperatura
Aux input 1
Aux input 2
Batería de arranque + (negativo de la batería de arranque: conectar el cable negativo de la batería).
Relé de puesta a tierra
Relay contacts K1
Relay contacts K2
Sensor de tensión |
| **F** | Conexión del negativo de la batería por medio de M8 doble. |
| **G** | Conexión positivo batería M8 doble. |
| **H** | Conector para conmutador remoto:
Terminal izquierdo corto y medio para "encender".
Terminal derecho corto y medio para conmutar a "charger only". |
| **I** | Contacto de la alarma: (de izquierda a derecha) NC, NO, COM. |
| **J** | Entrada CA (suministro pantalán/red) AC-in-2. De izquierda a derecha: L (fase), N (neutro), GROUND (tierra). |
| **K** | Pulsadores para modo configuración |
| **L** | Conexión a tierra primaria (PE). |
| **M** | Conmutadores DIP para modo de configuración. |
| **N** | Potenciómetros, ajuste de fábrica SW1 = posición derecha, SW2 = posición izquierda.
SW1: Sin función. Para su uso en funciones futuras.
SW2: INT(R) = relé de puesta a tierra interno seleccionado, EXT(L) = relé de puesta a tierra externo seleccionado (para conectar un relé GND ext: ver E). |

A	AC-inmatning (generatorinmatning) AC-in-1. Vänster till höger, GROUND (jord), L (fas), N (neutral).
B	2x RJ45-anslutningsdon för fjärrkontroll och/eller parallell- / trefasdrift
C	AC-utmatning AC-out-1. Vänster till höger: L (fas), N (neutral), GROUND (jord).
D	AC-utmatning AC-out-2. Vänster till höger: L (fas), N (neutral).
E	Poler för: (vänster till höger)
Temperature sensor	
Aux input 1	
Aux input 2	
GND-relay	
Starter battery plus + (startbatteri minus: använd batteriets minuskabel för anslutning).	
Relay contacts K1	
Relay contacts K2	
Voltage sense	
F	Dubbelt M8 batteri minusanslutning
G	Dubbelt M8 batteri plusanslutning
H	Anslutningsdon för fjärrswitch:
Kortslut den vänstra och mittersta polen för att växla till "på"	
Kortslut den högra och mittersta polen för att växla till "endast laddning".	
I	Larmkontakt: (vänster till höger) NC, NO, COM.
J	AC-inmatning (land-/nätförsörjning) AC-in-2. Vänster till höger. L (fas), N (neutral), GROUND (jord).
K	Tøyknaappar för inställningsläge.
L	Primär jordanslutning (PE).
M	DIP-switchar för inställningsläge.
N	Glickkontaktdon, fabriksinställning SW1= höger position, SW2 = höger position.
SW1: Ej tillämplig. Att användas för framtida funktioner.
SW2: INT(R) = internt GND-relä valt, EXT(L) = extern GND-relä valt (för att ansluta externt GND-relä: se E). |
* See table in Chapter 4.2 "Recommended DC fuse".
* Zie de tabel in Hst 4.2 "Aanbevolen DC zekering"
* Voir le tableau du Chapitre 4.2 « Fusible CC recommandé ».
* Ver tabla en Capítulo 4.2 "Fusible CC recomendado".
* Se tabellen i avsnitt 4.2 "rekommenderad DC-säkring".
APPENDIX D: Three-phase connection
ANNEXE D : Configuration triphasée
ANHANG D: Drei Phasen-Betrieb
APÉNDICE D: Conexión trifásica
APPENDIX D: Trefasanslutning
APPENDIX E: Charge characteristics

4-stage charging:

- **Bulk**
 Entered when charger is started. Constant current is applied until nominal battery voltage is reached, depending on temperature and input voltage, after which constant power is applied up to the point where excessive gassing is starting (14.4V resp. 28.8V, temperature-compensated).

- **Battery Safe**
 The applied voltage to the battery is raised gradually until the set Absorption voltage is reached. The Battery Safe Mode is part of the calculated absorption time.

- **Absorption**
 The absorption period is dependent on the bulk period. The maximum absorption time is the set Maximum Absorption time.

- **Float**
 Float voltage is applied to keep the battery fully charged

- **Storage**
 After one day of float charge the output voltage is reduced to storage level. This is 13.2V resp. 26.4V (for 12V and 24V charger). This will limit water loss to a minimum when the battery is stored for the winter season.
 After an adjustable time (default = 7 days) the charger will enter Repeated Absorption mode for an adjustable time (default = one hour) to ‘refresh’ the battery.

Charge en 4 étapes :

- **Bulk**
 Saisi quand le chargeur est démarré. Un courant continu est appliqué jusqu'à ce que la tension nominale de la batterie soit atteinte, en fonction de la température et de la tension d'entrée, après quoi une puissance constante est appliquée jusqu'au point où un gazage excessif débute (14.4 V resp. 28.8 V, température corrigée).

- **Battery Safe**
 La tension appliquée à la batterie augmente de manière graduelle jusqu'à ce que la tension d'absorption soit atteinte. Le mode « Battery Safe » fait partie de la durée d'absorption calculée.

- **Absorption**
 La période d'absorption dépend de la période Bulk. La durée d'absorption maximale est celle qui est configurée.

- **Float**
 La tension Float est appliquée pour maintenir la batterie complètement chargée.

- **Tension**
 Après un jour de charge Float, la tension de sortie est réduite à un niveau de stockage. Ce qui représente resp. 13.2V et 26.4V (pour un chargeur de 12V et 24V). Ceci limitera au minimum les pertes d'eau quand la batterie est stockée durant la saison hivernale.
 Après une durée ajustable (par défaut = 7 jours), le chargeur va entrer en mode Absorption répétée pour une durée réglable (par défaut = 1 heure) pour « rafraîchir la batterie ».
4-stufiges Laden:

Bulk

Battery Safe
Die an der Batterie anliegende Spannung wird schrittweise erhöht, bis die eingestellte Konstantspannung erreicht wird. Der Battery Safe Modus ist Teil der berechneten Konstantspannungsdauer.

Konstantspannungsmodus
Die Konstantspannungsdauer hängt von der Konstantstromdauer ab. Die maximale Konstantspannungsdauer ist die eingestellte Maximale Konstantspannungsdauer.

Ladeerhaltungsmodus
Die Ladeerhaltungsspannung wird dazu genutzt, um die Batterie im voll aufgeladenen Zustand zu halten.

Lagermodus
Nach einem Tag in der Erhaltungsladungsphase wird die Ausgangsspannung auf das Niveau der Lagerungsspannung gesenkt. Das heißt auf 13,2 V bzw. 26,4 V (für 12 V und 24 V Ladegeräte). Dadurch wird der Wasserverlust weitestgehend minimiert, wenn die Batterie für den Winter eingelagert wird. Nach einem regelbaren Zeitraum (Standard = 7 Tage) schaltet das Ladegerät in den Wiederholten-Konstantspannungsmodus und zwar für einen einstellbaren Zeitraum (Standard = eine Stunde), um die Batterie "aufzufrischen".

Carga de 4 – etapas

Bulk
Introducido al arrancar el cargador. Se aplica una corriente constante hasta alcanzar la tensión de la batería, según la temperatura y de la tensión de entrada, tras lo cual, se aplica una corriente constante hasta el punto en que empiece un gaseado excesivo (14,4V resp. 28,8V temperatura compensada).

Battery Safe
La tensión aplicada a la batería aumenta gradualmente hasta alcanzar la tensión de absorción establecida. El modo Battery Safe forma parte del tiempo de absorción calculado.

Absorption
El periodo de absorción depende del periodo inicial. El tiempo máximo de absorción máximo es el tiempo de absorción máximo establecido.

Float
La tensión de flotación se aplica para mantener la batería completamente cargada.

Almacenamiento
Después de un día de carga flotación, se reduce la tensión de salida a nivel de almacenamiento. Esto es 13,2V resp. 26,4V (para cargadores de 12V y 24V). Esto mantendrá la pérdida de agua al mínimo, cuando la batería se almacene para la temporada de invierno. Tras un periodo de tiempo que puede ajustarse (por defecto = 7 días), el cargador entrará en modo "Repeated Absorption" (absorción repetida) durante un periodo de tiempo que se puede ajustar (por defecto = 1 hora) para "refrescar la batería".

4-stegs laddning:

Bulk
Anges när laddaren är igång. Konstant ström avges till dess att den nominella batterispänningen uppnås, beroende på temperatur- och ingångsspänningen, och därefter avges konstant kraft upp till den punkt då det börjar bildas för hög gasning (14,4 V och 28,8 V respektive, med kompenserad temperatur).

Battery Safe
Spänningen som tillämpas på batteriet ökas gradvis till dess att fastställd absorpationsspänning uppnås. Läget Battery Safe är en del av den beräknade absorptionsstiden.

Absorption
Absorptionsperioden beror på bulkperioden. Den maximala absorptionsstiden är den fastställda maximala absorptionsstiden.

Float
Floatspänning tillämpas för att hålla batteriet fullladdat

Förvaring
Default output voltages for Float and Absorption are at 25°C. Reduced Float voltage follows Float voltage and Raised Absorption voltage follows Absorption voltage. In adjust mode temperature compensation does not apply.

EN: Default output voltages for Float and Absorption are at 25°C. Reduced Float voltage follows Float voltage and Raised Absorption voltage follows Absorption voltage. In adjust mode temperature compensation does not apply.

FR: Les tensions de charge Absorption et Float sont réglées en usine pour 25°C. Une tension Float réduite suit une tension Float, et une tension d'absorption augmentée suit une tension d'absorption. En mode d'ajustement, la compensation de température ne s'applique pas.

ES: Las tensiones de salida por defecto para "Float" y "Absorption" están a 25°C. La tensión de flotación reducida sigue a la tensión de flotación y la tensión de absorción incrementada sigue a tensión de absorción. En modo de ajuste la compensación de temperatura no se aplica.

APPENDIX G: Dimensions
ANNEXE G : Dimensions
ANHANG G: Maße
APÉNDICE G: Dimensiones
APPENDIX G: Dimensioner